Modeling Restoration Outcomes for the Everglades Ridge-Slough Landscape

Jud Harvey

Jay Choi

Noah Schmadel

Restoration Ecology

RESEARCH ARTICLE

Predicting outcomes of restored Everglades high flow: a model system for scientifically managed floodplains

Jay Choi¹, Jud W. Harvey^{1,2}

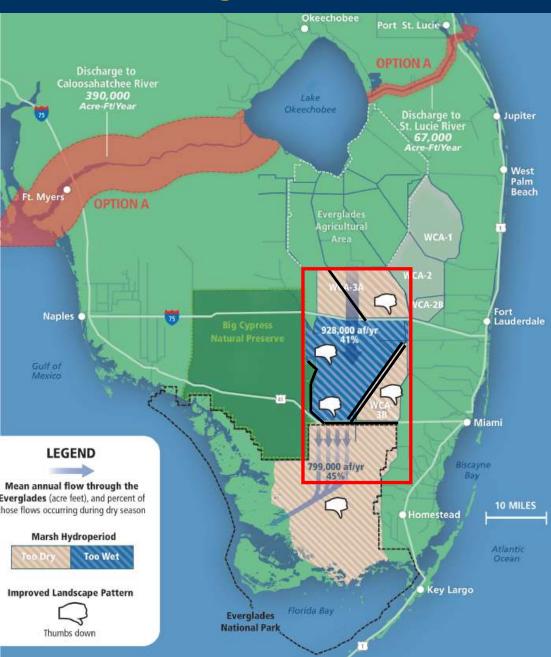
Factors Affecting Restoration Success

Restored

Hydrologic Conditions:

Maintain water depth and flow for vegetation communities and ecological processes

Functionalities of the Landscape:


Deep water slough (60%) between ridges supports production and diverse ecosystem

Everglades Restoration Options

Option A = No Action Existing Conditions Baseline (ECB)

(SERES Report, 2015 Everglades Foundation)

<u>Goal</u>

Forecast outcomes of 4 restoration options in different sub-basins

Everglades Restoration Options

		Options	Water Storage (acre-feet/yr)	% Predrainage flows	% Reduction of Internal Barriers to Sheet Flow
Nº ACTION	Α	Existing Conditions Baseline (ECB)	0	52	125 miles of levees
ate	B	Comprehensive Everglades Restoration Plan (CERP)	3.0M	87	54
Moderate	С	Partial Restoration (PR) "CERP light"	1.2M	79	54
SSIVE	D	Expanded Storage and Decomp (ESD)	1.3M	91	69
Aggressive	E	Maximum Storage and Decomp (MSD)	2.7M	90	75
	-		CEDEC Do	nort 2015_5	varaladas Equindation)

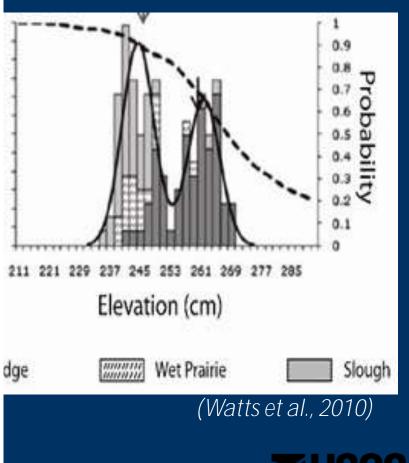
(SERES Report, 2015, Everglades Foundation)


Our Approach:

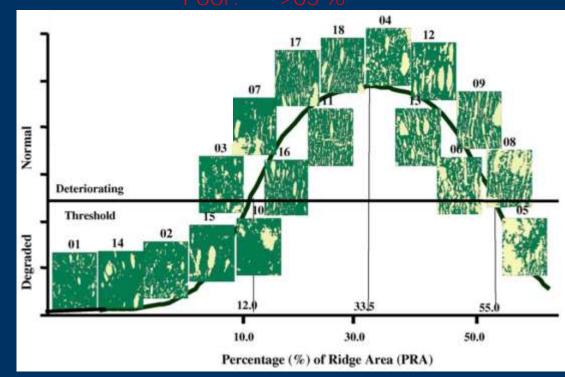
1. Existing Hydrologic Simulations From 1965-2000 – (SFWMD, 2008)

2. Functionality Metrics of the Landscape

Forecast System-Wide Restoration Outcomes

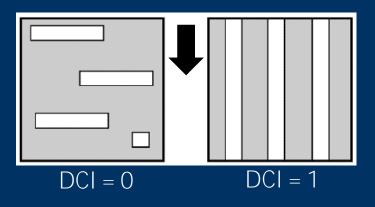

Wu et al., 2006 Ecological Complexity

Nungesser, 2011 Wetlands Ecology and Management


Watts et al., 2010 Ecosystems e-slough microtopography Good: >20 cm difference At Risk: 10-20 cm difference Poor: <10 cm difference

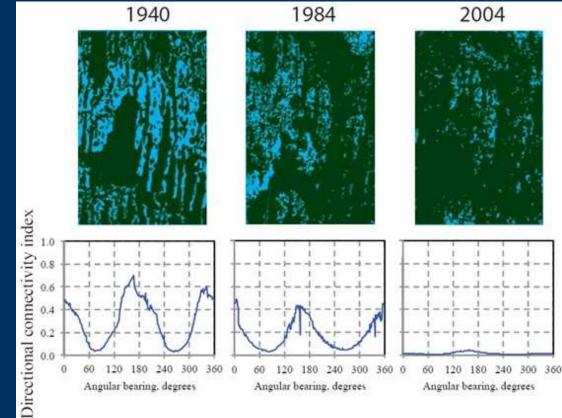
1. Ridge-slough microtopography

2. Vegetation (ridge) coverage Good: <50 % At Risk: 50-65 %



(Wu et al., 2006)

- 1. Ridge-slough microtopography
- 2. Vegetation (ridge) coverage
- 3. Directional Connectivity Index (DCI) Good: >0.6 At Risk: 0.4-0.6 Poor: <0.4



⁽Larsen et al., 2012)



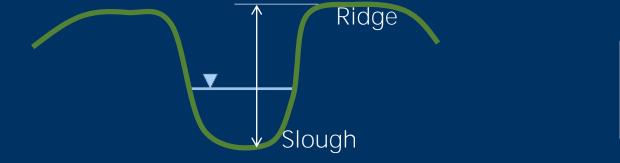
- 1. Ridge-slough microtopography
- 2. Vegetation (ridge) coverage
- 3. Directional Connectivity Index (DCI)

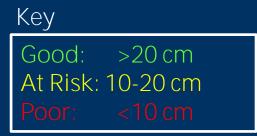
Target Hydrologic Conditions

1. Water Depth in Sloughs (cm) Dry Season Good: 15-35 At Risk: 5-15 Poor: <5

Wet Season 55-75 35-55 or 75-85 <35 or >85

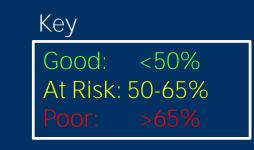
2. Hydroperiod (# days sloughs are flowing) Good: >350 At Risk: 340-350 Poor: <340


3. Flow velocity (cm/s) Good: >1.0 At Risk: 0.4-1.0 Poor: <0.4


4. Angle between flow and slough orientation (degree) Good: <20 At Risk: 20-35 Poor: >35

Flattening of Ridge-Slough Microtopography (Present-Day)

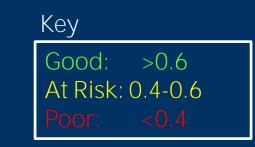
Variation between ridge and slough landscape



			Sub-basin		
Metric	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
Microtopographic difference (cm)	4.0	18.5	21.3	5.2	12.5

Proliferation of Vegetation (Present-Day Sawgrass)

Sub-basin


Metric	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
Vegetation Coverage (%)	74	61	42	86	54

Lost Directional Connectivity of Landscape (Present-Day)

(Larsen et al., 2012)

, , , , , , , , , , , , , , , , , , ,			Sub-basin		
Metric	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
DCI	0.28	0.57	0.84	0.07	0.85

Summary of Present-Day Landscape Functionality

			Sub-basin		
Metric	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
Microtopographic difference (cm)	4.0	18.5	21.3		12.5
Vegetation Coverage (%)	74	61	42		54
DCI	0.28	0.57	0.84		0.85

 Lost ridge and slough landscape functionality at WCA-3A North and WCA-3B

Predicted Water Depth During Dry Season

Water depth in sloughs (cm)

	Options	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
No action	ECB	-5.3	12.1	24.4	18.4	20.6
Moderate	PR	-0.7	18.3	18.4	21.5	29.3
	CERP	- 0.1	18.7	18.6	25.2	33.3
Aggressive	ESD	-1.3	18.2	16.6	18.6	30.3
	MSD	-7.2	13.9	14.6	23.2	32.6

 Restoration actions cannot improve the water depth at WCA-3A North during the dry season Good: 15-35 cm At Risk: 5-15 cm

Key

Predicted Water Depth During Wet Season

Water depth in sloughs (cm)

	Options	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
No action	ECB	31.1	58.0	86.8	51.7	63.4
Moderate	PR	23.7	45.2	54.3	68.7	70.2
	CERP	23.5	43.8	52.9	70.9	71.9
Aggressive	ESD	25.1	40.6	46.2	81.3	73.4
	MSD	39.2	50.5	51.0	81.0	73.5

- Improvement at WCA-3A North, but only for most aggressive option
- Aggressive action may put WCA-3B at risk

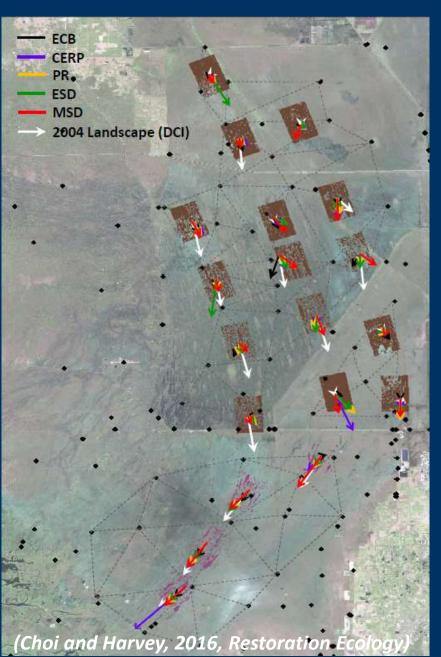
Good: 55-75 cm At Risk: 35-55 or 75-85 cm Poor: <35 or >85 cm

Key

Predicted Hydroperiod

days sloughs are flowing

	Options	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
No action	ECB	310	347	358	354	340
Moderate	PR	307	358	354	351	354
	CERP	307	358	354	358	362
Aggressive	ESD	300	354	351	347	354
	MSD	278	352	347	354	362


 Restoration actions cannot improve the hydroperiod at WCA-3A North Key

Good: >350 d At Risk: 340-350 d Poor: <340 d

Predicted Flow Speed and Direction

(コ()()

Flow Speed (cm/s)

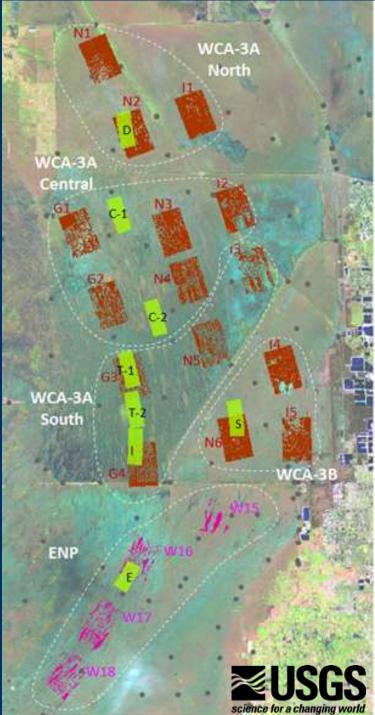
Options	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
ECB	0.2	0.4	0.2	0.1	0.7
PR	0.4	0.5	0.5	0.2	0.9
CERP	0.4	0.5	0.4	0.2	0.9
ESD	0.4	0.6	0.5	<mark>0.3</mark>	0.9
MSD	0.6	0.7	0.6	0.3	0.9
			. 0 1 1 0		,

Angle between flow direction and slough orientation (degree)

4-1

Options	5 WCA-3A North	WCA-3A Central		WCA-3B	ENP
ECB	21	20	46	36	37
PR	53	23	21	36	3
CERP	60	20	14	20	5
ESD	51	25	12	<mark>26</mark>	3
MSD	33	22	<mark>21</mark>	34	4
	Good: <20) At Risk	k: 20-35	Poor: >35	

Forecasted (36 y) Restoration Outcome


	Options	WCA-3A North	WCA-3A Central	WCA-3A South	WCA-3B	ENP
No action	ECB	Poor	At Risk	Poor	Poor	At Risk
Moderate	PR	Poor	At Risk	Good		Good
	CERP	Poor	At Risk	Good	Poor	Good
Aggressive	ESD	Poor	At Risk	Good	Poor	Good
	MSD	Poor	At Risk	Good	Poor	Good

Failed to achieve target hydrologic conditions at WCA-3A North and WCA-3B

Conclusions

- Not all sub-basins benefit equally from restoration.
- None of the restoration options are likely to improve *WCA-3A North* and *WCA-3B* functionality.
- All restoration options are likely to improve the hydrologic conditions at *WCA-3A Central*, *WCA-3A South, and ENP*.
- For most cases, moderate and aggressive restoration options predicted very similar outcomes for landscape conditions.
- Present-day extent of ridge-slough microtopographic difference appears to be the best single predictor of restoration success.

