Active management in support of ecosystem restoration

sfwmd.gov

Christa Zweig, Susan Newman, Colin Saunders, and Fred Sklar

Active Management

- The Everglades has undergone drastic changes from pre-disturbance conditions
- Indirect restoration may not suffice
- Loss of:
 - Topography
 - Landscape pattern
 - Ecosystem engineers

• Ecological drivers (disturbance, natural periodicity, etc.)

Active Management

History of active management in Everglades

- Invasives
 - Plant—large scale eradication of Melaleuca, Brazilian pepper, Lygodium
 - Animals—pythons and other reptiles
- Pattern restoration
 - Fire programs
 - Tree island plantings
 - Cattail Habitat Improvement Project/Active Marsh Improvement (CHIP/AMI)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

CEPP/DECOMP

Decomp Physical Model

- Extent of canal backfilling and levee removal required to maintain sheetflow
- Surface water flow velocity required for creating and maintaining ridge and slough habitat and landscape

Decomp Physical Model

Decomp Physical Model flow way

What can we do?

- Active management experiment or "Brute Force Science"
 - Can we change direction of flow?
 - Can we increase flow speeds and propagate it further into the DPM footprint?
 - Can we create microtopography?
 - Can we create differential flow (ridge vs. slough)?
 - What is the best option for active management of an over-drained ridge and slough landscape, particularly at a large scale?

Phase 1: "Zweig slough"—cut

Phase 2: "Smash" slough

53

Environment Fluid Dynamics Code (EFDC) Model

Flow velocity and direction pre-active management

EFDC Model

Active management removed vegetation and decreased drag for flow

EFDC Model

Flow velocity and direction post-active management

EFDC Model Validation

270 m from structure

360 m from structure

700 m from structure

Increasing blood flow and physically removing the plaque is expected to "jump start" ridge and slough restoration

152

Question	Landscape	Smash	Cut
Can we change direction of flow?	Model Y	Ν	Y
Can we increase flow speeds and propagate it further into the DPM footprint?	Model Y	?	?
Can we create microtopography?	Not in model	NY	Y
Can we create differential flow (ridge vs. slough)?	Model Y	Y	Y
What is the best option for active management of an over-drained ridge and slough landscape?	Herbicide Herb/Fire?	? Fire?	?

CEPP and WCA 3B

Chris Hansen, Claus Hansen, Carlos Coronado, Michael Manna, Erik Tate-Boldt, Kristen Seitz, Mike Baranski, DPM science team Click to add title

Look Mom! I'm on Google Earth!

EFDC Model

- Elevation DEM from HAED data
- Overall landscape flow vectors (dye, SF6 tracer, Flowtracker data)
- Depths and velocity data at certain points in the system (Flowtracker)
- Inputs through S-152
- Outputs through the levee gap
- Estimates of seepage from Flowtracker measurements near levee
- Grid and time steps were estimated from courant number equations
- Domain is a georeferenced polygon from the footprint of DPM
- Drag coefficient for sawgrass from literature