

Development of Empirical Hydrologic and Water Quality Models of the Loxahatchee NWF Using Data-Mining Techniques

Paul Conrads
USGS- SC Water Science Center
Ed Roehl, Jr
Advanced Data Mining International, LLP

Greater Everglade Ecosystem Restoration Conference July 13, 2010

U.S. Department of the Interior U.S. Geological Survey

Outline

- Data mining & Data driven models
- Modeling Loxahatchee NWR:
 - Water levels
 - Specific conductance
 - Total phosphorus
- LOXANN Decision Support System (DSS)
- DSS applications
 - Evaluation of flow releases

What is Data Mining?

- Data Mining: the search for valuable knowledge in massive volumes of data
- An amalgamation of techniques from various disciplines
- Data Mining Tool Box
 - signal processing, statistics, machine learning, chaos theory, advanced visualization
 - Artificial neural networks (ANN) models one approach to machine learning

Data | Information | Knowledge

Data Driven Models

- Living in an era of "Big Data"
- Modeling exercise in mapping inputs and outputs
- Empirical models based on observations rather than on mathematically describable system processes
- Examples:
 - Linear regression: Y = mX + b
 - Artificial Neural Networks:

Loxahatchee Empirical Model

- Given inputs of flow, precipitation, and ET
- Create model(s) to simulate:
 - Water levels
 - Specific conductance
 - Total phosphorus

Inputs

Pump Station Pump Station Pump Station North Pump Station Pump Station Pump Station Pump Station Q2 1-7 1-8T 0-94C 0-

Outputs

Model Architecture

Blue – inputs
Green – gage
height
Yellow – specific
conductance
Pink phosphorus

SIANN = spatially interpolating artificial neural network model

Gage Height Models

Linear models based on optimal time delays and moving window averages of flow, rainfall, and ET

Spatially Interpolating ANNs – error correction models

Final prediction is the sum of the linear model and error prediction models.

Tau Tool

Excel application to evaluate moving window averages (MWA) and time delays of flow inputs

Station selection

MWA and time delay settings

Rainfall

ET

Aggregated flow

Statistics – R and R²

Low correlation between untransformed flow input and gage height R² < 0.01

Linear Models

Adjust MWA and time delays to increase the correlation between inputs and gage heights.

	win&stats	win&stats	win&stats	win&stats	win&stats	win&stats	
Output	1-7_GH-INCH	1-8T_GH-INCH	18C_GH-INCH	1-9_GH-INCH	NORTH_GH-INCH	SOUTH_GH-INCH	
N	2307	1705	2159	2312	1985	1436	
RAIN1	262	286	286	265	289	264	
RAIN2	42	82	80	45	51	58	
ET	11	55	42	39	5	14	
QTOT-in 1	146	206	206	141	140	233	
QTOT-in 2	1	45	8	1	1	19	
linear m	0.663	0.870	1.182	0.731	0.619	0.993	
linear b	181.84	172.39	165.78	181.15	182.88	165.23	
linear R2	0.839	0.913	0.815	0.867	0.753	0.933	

Correlation (R²) increased from < 0.01 to >0.75

Gage Height Error Correction Model

Model error with a spatially interpolating ANN model

Time series of linear model errors

Gage Height Error Correction Model

Time series of linear model errors

Simulated model error

Gage Height Predictions

Final gage height prediction is a summation of the linear and error models.

Site	1-7	1-8T	1-8C	1-9	North	South
N	2,123	1,705	2,123	2,312	1,985	1,436
R ²	0.932	0.976	0.932	0.953	0.902	0.972
RMSE (in.)	1.36	1.35	1.36	1.34	1.47	1.38
Min. Value (in.)	178.6	167.3	144.7	177.4	188	170.8
Max. Value (in.)	210.8	209.6	211.6	209.2	216	207.2
Range (in.)	32.3	42.4	66.8	31.8	28	36.4
RMSE/Range (%)	4.21	3.19	2.04	4.21	5.26	3.78

Final gage height Predictions: R² 0.90 - 0.98

Simulation of Specific Conductance and Total Phosphorus

Two stage models:

Static model using X, Y and measured data Dynamic model predict variability about mean

Decision Support System

- Excel application
- Integrates
 - Historical database
 - ANN and regression models
 - Model controls
 - Streaming graphics
 - •3D visualization
 - Model simulation output

Excel Spreadsheet

DSS Application: Canal water intrusion into the marsh

Intrusion events: Canal WL > Marsh WL Negative slope

Scenario 1

What will be the model respond be to the simulated change in slope if the flow of Q4 (S-10D, S-10C, S-10A, and S-39) is increased by 40 percent?

Increase flow by 40%

DSS Application Set-up

On Flow Set
 Point sheet¹ (Q
 SPs) set flows
 for the Q4
 structures to
 ²140% of
 historical flows

Flow input options:

% historical flow
Constant flow
All flows are set to % of
historical
100% = actual flows

		input	historical allowed]						
			option	min	max	min	max		Qs Setpoints		
		G-300Q	% < >	-1,302	2,494	-2,000	3,700	% cfs	<) <u>></u>	100 1,000
	Q1	G-301Q	%	-1,509	2,758	-2,300	4,100	% cfs	<	<u>></u>	100
	Г	G-251Q	%	0	430	0	650	% cfs	<) >	100
	Q2	G-310Q	%	0	3,224	0	4,800	%	<) <u>></u>	100 1,160
	Γ	S-6Q	0/	0	2,920	0	4,400	%	<) >	100
	Q3	S-10EQ	%	-554	0	-830	0		<		100
		G-338Q	%	-18	1	-27	2	%	<) >	100
1		S-10AQ	0/4	-4,921	0	-7,400	0	% cfs	<	4	140 -7,400
		S-10CQ	%	-3,735	0	-5,600	0	% cfs	<)	140 -5,470
	Q4	S-10DQ	0/_	-2,724	0	-4,100	0	% cfs	< <		140 -4,100
		S-39Q	%	-888	0	-1,300	0	% cfs	<	>	140
	Ī	G-94AQ	%	-227	0	-340	0	% cfs	<)	100
	Q5	G-94BQ	0/2	-269	0	-400	0	% cfs	<	>	100 -400
B		G-94CQ	%	-400	257	-600	390	% cfs	<	>	100 390
		S-362Q	%	0	2,044	0	3,100	% cfs	<) >	100 3,100
	Q6	ACME1Q	%	0	359	0	540	% cfs	<) >	100 540
į		ACME2Q	%	0	401	0	600	% cfs	<		100
				1						-	
Ė	4	► ► Info	Q SPs	Controls	InputGr	aphs / O	utputGrap		<u> </u>	IserDefQs / Output	ReleaseN

DSS Simulation Controls

DSS Scenario Results

40% increase flow Q4

- •Blue Simulated actual slope
- •Red Simulated scenario increase flow Q4 by 140%

Increasing the flows did increase the slope.
 Negative slopes overall were minimized
 Positive slopes also increased.

Scenario 2 Inflow = Outflow

Set Outflow = Inflows

DSS Scenario Results

Outflow = Inflow

•Blue – simulated actual slope
•Red – simulated scenario slope Outflow = Inflow

Increasing the outflows did increase the slope.
 Negative slopes overall were minimized
 USGS
 Positive slopes also increased.

Summary

- Model allows users to evaluate effects of flow releases
- Evaluate short- and long-term flow regimes
- Excel platform for DSS facilitates dissemination of models user of various technical levels
- DSS database easily updated
- USGS report in final stage of review/production process.

Questions

Paul Conrads pconrads@usgs.gov 803 750-6140

