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Presentation Outline

• What is a “Inferential Sensor”?
• Background
Industrial application

• Development issues
• Inferential Sensor (IS) development 

f th EDEN N t kfor the EDEN Network 
• EDENIS Prototype



Tough Environment to Monitorg

• Emissions regulations require 
t f ffl tmeasurements of effluent gases

• Smoke stack burns up probes
• Need alternative to “hard” 

sensors



Hard Sensor vs. Inferential Sensor

• Virtual sensor replaces actual sensor
Temporary gage smoke stack
O t l t t f i iOperate plant to cover range of emissions 
Develop model of emissions based on 

operationsoperations
Model becomes the “Inferential Sensor’



If it is good enough for Industry...g g y

• Use similar approach for real-time data
• Develop models to predict real-time data
• Use predictions as “inferential-sensor” to:
QA/QC hard sensor
Provide accurate estimates for hard sensor
P id d d t i lProvide redundant signal 



EDEN Water-Surface  Map

Bad values 
creates 
erroneous 
areas on 
maps



Problem

Need to minimize 
missing and 
erroneous dataerroneous data

Approachpp

Develop 
f“inferential” 

sensors for 
Inferential 

Sensor 
redundant signal

Se so
application



Challenges:
Hypothetical CaseHypothetical Case

Create model 
(Inferential Sensor)(Inferential Sensor) 
for Site B using Site 
A as an input

Site A
Decide when to use 
Inferential Sensor 
instead of gage dataSite B instead of gage data 

A l li iActual application 
would be for 253 
stations



Hypothetical Case: Gage Datayp g

Possible Outliers

fe
et

gh
t, 

in
 

ag
e 

H
ei

Missing Data

G
a Missing Data



Hypothetical Case: Inferential Sensoryp
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et How to decide when to use the inferential 
sensor?
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1. 95th confidence interval of model

G
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2. Constant distance from inferential sensor
R2=0.94



Hypothetical Case: 
When to use Inferential Sensor?When to use Inferential Sensor?
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Hypothetical Case: 
When to use Inferential Sensor?When to use Inferential Sensor?
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Hypothetical Case - commentsyp

• Issue of model accuracy
• Immediate benefit for missing datag
• Made the assumption that Site A was correct
• What if data for Site A is missing?g
• Issues are magnified when dealing with a 

network of 253 gagesg g



EDEN Inferential Sensor Development:
3 Ph P j t3 Phase Project

• Phase 1Phase 1
Develop application to determine good data

• Phase 2Phase 2
Develop inferential sensor models

• Phase 3
Integrate inferential sensors into daily real-time 

EDEN data stream



Phase 1: Subset of Good Data

• Create a series of filters to test data
High & low thresholds
High & low rate-of-change thresholds

UNIVARIATE 
FILTER CHECK DESCRIPTION PRECEDENCE

WATER LEVEL 
LIMIT (ft.)

LOST_SIGNAL no signal 1 NA
GT_RNG_UL x(t) > signal range Upper Range Limit 2 15.19
LT RNG LL x(t) < signal range Upper Range Limit 3 6.99LT_RNG_LL x(t)  signal range Upper Range Limit 3 6.99

GT_UCL x(t) > signal  Upper Control Limit 4 14.73
LT_LCL x(t) < signal  Upper Control Limit 5 8.56
Sn_LT_L flatlined: x'(t) = x(t)=x(t-1); SUM[(|x'(t)|,…,|x'(t-n+1)|] < Limit 6 0.00

D1_GT_L_1 vfast vlarge increase: x(t)-x(t-1) > Limit 7 1.92
D1_LT_L_1 vfast vlarge decrease: x(t)-x(t-1) < Limit 8 -2.34

D1Sn GT L 1 fast vlarge increase: x'(t)=x(t)-x(t-1); Sum[x'(t) x'(t-n+1)] > Limit 9 1 98D1Sn_GT_L_1 fast vlarge increase: x (t) x(t) x(t 1); Sum[x (t),…x (t n+1)] > Limit 9 1.98
D1Sn_LT_L_1 fast vlarge decrease: x'(t)=x(t)-x(t-1); Sum[x'(t),…x'(t-n+1)] < Limit 10 -2.52
D1_GT_L_2 vfast large increase:  x(t) - x(t-1) > Limit 11 1.69
D1_LT_L_2 vfast large decrease:  x(t) - x(t-1)< Limit 12 -0.25

D1Sn_GT_L_2 fast large increase: x'(t)=x(t)-x(t-1); Sum[x'(t),…x'(t-n+1)] > Limit 13 1.98
D1Sn_LT_L_2 fast large decrease: x'(t)=x(t)-x(t-1); Sum[x'(t),…x'(t-n+1)] < Limit 14 -0.27



Phase 2: Inferential Sensor Development
Model Development

• One Approach – Canned Models
Create multiple models for a gage
S t i it f d l t d diSet priority for model to use depending on 

available data
Large number of modelsg
Not all combinations of gages would be 

addressed  



Phase 2: Inferential Sensor Development
Model Development

• Second Approach – Model on the Fly

Develop models based on available data
Address all combinations of gagesAddress all combinations of gages
Issue of correlation of multiple inputs
More complex programming thanMore complex programming than 

canned equations



Modeling on the Flyg y

• 12 Sites selected for algorithm development
• C l ti t d f i 90 d• Correlations computed for previous 90 days
• Top five correlated stations determined for each site
• Multi-variate regression equations (1-5 stations)Multi-variate regression equations (1-5 stations) 

computed on the fly 
Rank 

(Out of 260)
Largest R 
(Pearson) 10th Largest R

G211T_ENP_CSTR 260 0.3035 0.232
S140H_WCA3_CSTR 257 0.7504 0.6807
S190H_BCNP_CSTR 247 0.8754 0.0081
W15_WCA3_MSH 173 0.9676 0.9204
CR2 ENP MSH 135 0.9803 0.937469395

Still problem of 
CR2_ENP_MSH 135 0.9803 0.937469395
E146_ENP_MSH 120 0.9835 0.936
MUD_FBAY_RVR 115 0.9843 0.8423
R3110_ENP_MSH 58 0.9946 0.9125
G119T_PENN_CSTR 35 0.998 0.749
L31N1 ENP CNL 25 0 9987 0 8001

correlated inputs 

L31N1_ENP_CNL 25 0.9987 0.8001
S10DT_WCA2_MSTR 19 0.9987 0.9551
S343AH_WCA3_MSTR 11 0.999 0.95



Principal Component Analysisp p y

• Definition: “A mathematical procedure that 
transforms a set of correlated variables into a smallertransforms a set of correlated variables into a smaller 
number of uncorrelated variables Generate an array 
of input data”

Use the Jacobi eigenvalue algorithm to calculate the 
eigenvalues and eigenvectors of the covariance matrix.eigenvalues and eigenvectors of the covariance matrix.

Calculate the Principal Components (PC)
PCs are decorrelated from each other
Comp te m lti ariate linear regression to predict gageCompute multivariate linear regression to predict gage 

measurement



Example: PCA5_3PC
Overall R2: 0 9953CR2_ENP_MSH Overall R :  0.9953

Max 90 Day R2:  0.9985
Min 90 Day R2:  0.9146

RMSE:  0.0762
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Example: PCA5_5PC
Overall R2: 0 9976E146_ENP_MSH Overall R :  0.9976

Max 90 Day R2:  0.9986
Min 90 Day R2:  0.9602

RMSE:  0.0461
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Phase 3: Operational Applicationp pp

• Insert inferential 
i EDEN d tsensors in EDEN data 

stream
• D l li ti• Develop application 

for daily EDEN  
operationsoperations

• Provide digital record 
of daily QA/QCof daily QA/QC 
process Inferential 

Sensor 
application



EDENIS – EDEN Inferential Sensor 
Prototype - Control Worksheet

Select Daily, Quarterly or 
A l R A l iAnnual Run Analysis

Choose to date to begin 
l ianalysis

Fill Setup includingFill Setup including

Remove add or edit sitesRemove , add, or edit sites 
included in EDENIS

Set Pathnames for files used 
by EDENIS   



EDENIS
Control Worksheet



EDENIS
Site Review GraphicsSite_Review Graphics

Select Review Site

Filter15 = Dry Protocol Filter
Measured value is at or below the user set Dry Protocol 
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EDENIS 
Tabular data for review



ConclusionsConclusions

• Inferential Sensor provide:
Real-time QA/QC
Redundant signalg
Models developed on the fly

• Project scheduled for completion in September


