Restoring Tree Islands in the Everglades: Experimental Studies of Tree Seedling Survival and Growth

Paul WetzelSmith CollegeEric ClineFlorida International UniversityArnold van der ValkIowa State University

Photo by D. Kilbane

Causes of Tree Island Loss

Lygodium blanket "Ghost Island"

54% Decline

67% Decline

Study Objectives

- Determine the most hardy seedling species for tree island restoration
- Determine hydrologic range of common tree island seedlings
- Test effect of limestone core on seedling establishment

Loxahatchee Impoundment Landscape Assessment (LILA)

Species Tested

- Acer rubrum ullet
- Annona glabra ullet
- Chrysobalanus icaco Salix caroliniana ightarrow
- llex cassine \bullet

- Magnolia virginiana
- Myrica cerifera

Position Inundation (time) $1-4 \rightarrow 22-32\%$ $5-7 \rightarrow 43-60\%$ $8-10 \rightarrow 74-83\%$

Biomass by Island Core

Implications for Restoration

- Annona glabra, Ilex cassine, and Salix caroliniana survived both low and high water periods best.
 - Most suitable species for the initial re-vegetation of restored tree islands.
- Larger seedlings (1 m tall) should be planted on restored tree islands.
- Limestone cores may improve growth of tree seedlings.
 - Constructed islands should have limestone cores if economically feasible.