A spatially-distributed phosphorus water-quality model for the linked surfacewater/groundwater variable density hydrology of the southern Everglades

Stuart Muller Andy James, Rafa Munoz-Carpena, Jim Jawitz

Why model biogeochemistry in the Everglades

- We have to it's mandated
- Predicting WQ and consequent ecological consequences of proposed management decisions
- Improve understanding the system
- Generating input data for other models

Making a mechanistic biogeochemical model

- Define the modeling objective
- Understand the real system
- Understand the modeling limitations
- Fix the conceptualization
- Code it
- Calibrate and test
- Rinse and repeat

Limitations

- My own: "modeling is an art"
- Fix the conceptualization
 - New data?
 - New objective?
 - New biogeochemistry?
- Need a computer nerd to code it
- Hydrodynamics: link it or create it
- Time & Money

Biogeochemical CYCLE

<u>Transport And Reaction</u> <u>Simulation Engine (TARSE)</u>

Limitations

- My own: "modeling is an *abstract* art"
- Fix **Define** the conceptualization
 - New data? Optimize
 - New objective? Adapt
 - New biogeochemistry? Redefine
- Need a computer nerd biogeochemist to code it
- Hydrodynamics: link it/create it once
- LESS Time & LESS Money

Opportunities for CERP

- Wide bieogeochemical interests
 P, N, S, Hg, Pesticides, DOM
- Existing suite of hydrologic models
- Evaluate management scenarios based on water quality
- Better use of data
- Experimentability
- Integrated modeling potential

Unique hydrology vs unique biogeochemistry

FTLOADDS + TARSE

Summary

- TARSE is a water quality modeling framework
- Puts more control in the hands of the modeler
 - Great potential for versatile application
- Coming soon to southern Everglades

