The Relationship of USGS Hydrologic Modeling Efforts to Ecosystem Restoration

Melinda Lohmann, Eric Swain, and Jeremy Decker

GEER- Greater Everglades Ecosystem Restoration Naples, Fl July 29, 2008

CODE DEVELOPMENT

- FTLOADDS (Flow and Transport in a Linked Overland/Aquifer Density Dependent System) Combines:
 - SWIFT2D surface water code
 - SEAWAT variable density ground-water flow and transport code
 - Represents leakage between the Bay, wetlands, and the groundwater system
 - Salinity transport is represented in each model and passed with leakage
 - Modifications
 - Heat Transport

TIME APPLICATION

TIDES AND INFLOWS IN THE MANGROVES OF THE EVERGLADES

- TIME (PES and SFWMD funded) is a joint effort to research the effects of freshwater inflows and tidal forces in the mangrove ecotone of south Florida.
- Major Data Provided:
 - Water levels,
 - Total Discharge
 - Freshwater Discharges at the Coast
 - Hydro-periods
 - Salinity
 - Temperature.

TIME LINKAGE TO TaRSE

- <u>Transport and Reaction Simulation Engine</u> (Dr. Munez at University of Florida)
- Developed for simulating P water-quality in Everglades (USGS report in preparation)
- TaRSE does not simulate hydrology
 - Linked to the South Florida Regional Simulation Model (RSM) to simulate P transport and cycling.
 - Currently integrating TaRSE with TIME

BISCAYNE BAY APPLICAITON

- Bay and Wetlands
 - 2-D overland flow and transport
 - SWIFT2D
- Aquifer
 - 3-D flow and transport
 - SEAWAT2000
- Canals
 - Not explicitly represented
 - Head boundary for aquifer
- GW/SW Interactions
 - FTLOADDS

Heat Transport Model and Species Habitat Use

Collaborative Effort with Hydrology and Biology

- Coastal hydrology model:
 - water temperature and salinity fluctuations that determine habitat suitability
- Model which can be used for research and management of many organisms and communities
 - Manatees
 - Oysters
 - Sharks
 - Many species of fish
 - Diamond Back Terrapins
 - Invasive Species

TEN THOUSAND ISLANDS AND 3-D Port of the Islands MODEL

Objectives

(1)Develop a hydrodynamic model of the Ten Thousand Islands

(2)Develop a 3-D model of the Port of the Islands

(3)Evaluate effects of Restoration on habitat

Tools

Environmental Fluid Dynamics Code (EFDC)

POTENTIAL FUTURE USES OF THE MODELS & RESEARCH

- Water Supply Issues
- Understanding climate change and effects to organisms
 - Sea level rise
 - Temperature increases
- Delineating manatee critical habitat use and carrying capacity in the Greater Everglades.
 - Population growth
 - Immigration from northern areas when power plants shut down.
- Understanding hurricane damage to habitats and the effects to hydrological processes and parameters that impact organisms
 - Before and after models to identify mechanisms and assess resilience of populations to storm events.

USGS Modeling Team and Collaborating Scientists

- USGS Fort Lauderdale
 - Melinda Wolfert-Lohmann
 - Christian Langevin
 - Eric Swain
 - Jeremy Decker
- USGS Gainesville
 - Brad Stith
 - Catherine Langtimm

- Collaborating Scientists
 - John Wang, UM
 - Jon Cline, University of Tennessee
 - Rafa Munez and Stuart Miller, UF
 - John Hamrick,Tetratech
 - Jerry Lorenz, Audubon
 - Michael Kohler and
 Momo Chen, SFWMD
 - Kiren Bahm, EdKearns, Dewitt Smith,ENP

QUESTIONS?

