Application of HYMAN Model to evaluate water and salt budgets in Shark River Estuary

> Cheng-Feng Tsai¹ Robert R. Twilley² Clinton S. Willson¹ Victor H. Rivera-Monroy²

¹Department of Civil and Environmental Engineering ²Department of Oceanography and Coastal Sciences Louisiana State University

Acknowledgements

The research was supported by the National Science Foundation under Grant No. DBI-0620409 and Grant No. DEB-9910514 (Florida Coastal Everglades, Long-Term Ecological Research). The development of ecogeomorphology concept was supported by the STC program of the National Science Foundation via the National Center for Earth-surface Dynamics under the agreement Number EAR- 0120914. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Outline

Introduction
Study Sites/Monitoring Stations
Conceptual Model
Input Parameters
Data Analyses
Results & Discussions
Conclusions

1. The Importance of Coastal Wetlands

Reduce storm surge and saltwater intrusion
Support food chain
Provide wildlife habitats
Improve water quality
Maintain a near-sea-level elevation
Protect coastal community

(Patrick 1994; Day *et al.* 1995; Kadlec 1995; Nepf 1999; Mitsch and Gosselink 2000; Day *et al.* 2007; Melesse *et al.* 2007; Spalding and Hester 2007)

2. The Everglades

3. The Water Flow in the Everglades

SOURCE: WWW.EVERGLADESPLAN.ORG

(Twilley and Rivera-Monroy 2005)

5. Study Sites and Monitoring Stations

Site	Latitude (N)	Longitude (W)	Availability	Agency			
SRS4	25° 24.5859'	80° 57.8586'	Channel water depth		upstre	.∾ am	
SRS5	25° 22.6214'	81° 1.9408'	Forest water depth Topography Pore water salinity	FCE	A CARDEN /		
SRS6	25° 21.8778'	81° 4.6768'	Sediment accretion rate Precipitation Temperature Channel salinity	ENP	SDS4		
ENP_TE	25° 24.4926'	80° 57.8604'			ENP_TE		
ENP_GI	25° 22.5870'	81° 1.7724'			The set with the		
ENP_SR	25° 21.1098'	81° 5.9814'			ENP_GI		
SRS6 LENP_SR mouth							
	25°22'54.9	Shark River Island			Image © 2008 DigitalGlobe Florida Department of Environmental Protection © 2008 Tele Atlas © 2008 Europa Technologies elev 0 ft Oct 27, 2004 Eye alt 15.0	Eye alt 15.06 mi	

6. Conceptual Model of HYMAN

(Twilley 1982)

7. Input Parameters

constantsdaily variables

8. Pore water measurements

9. Results and Discussions

SRS6

10. Conclusions

- The modified HYMAN model can reasonably match the pore water salinity observation trends in these three mangrove forest sites
- The simulated pore water salinity at each site is consistent with its distance to the estuary mouth
- Topography (e.g. bankstage) is the most critical factor to calibrate the HYMAN model
- Precipitation determines the timing of the pore water salinity peak in the forest

11. Future Study

Measure actual surface runoff
Determine groundwater recharge/discharge influence
Test upstream freshwater schemes
Run global climate change/sea level rise impacts

Questions?

