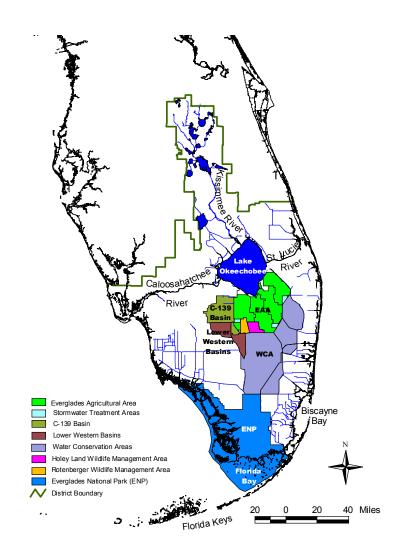
Long-term Water Quality Trends and BMPs in the Everglades Agricultural Area

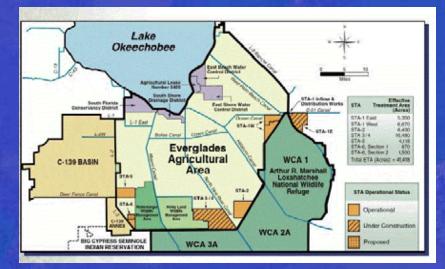

Samira Daroub¹, Tim Lang¹, Orlando Diaz², and Stuart VanHorn² July 2008

INTRODUCTION

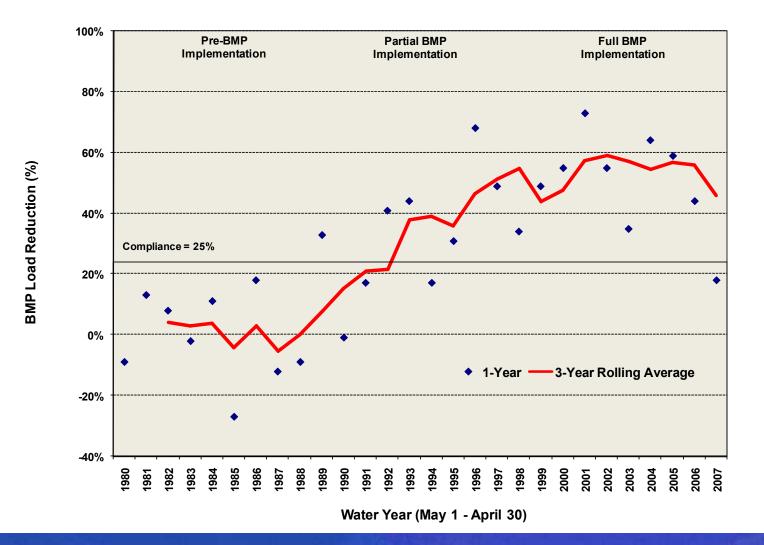
 The Everglades Agricultural Area (EAA): 283,000 ha of highly productive land south and downstream of Lake Okeechobee

CROPS & SOILS IN THE EAA

- Sugarcane is the major crop; also vegetables, sod, and rice
- Histosol (organic soil)predominant soil order in the EAA
- Soils were drained in the early 1900's for agricultural production
- Soil oxidation (subsidence)


FARM DRAINAGE

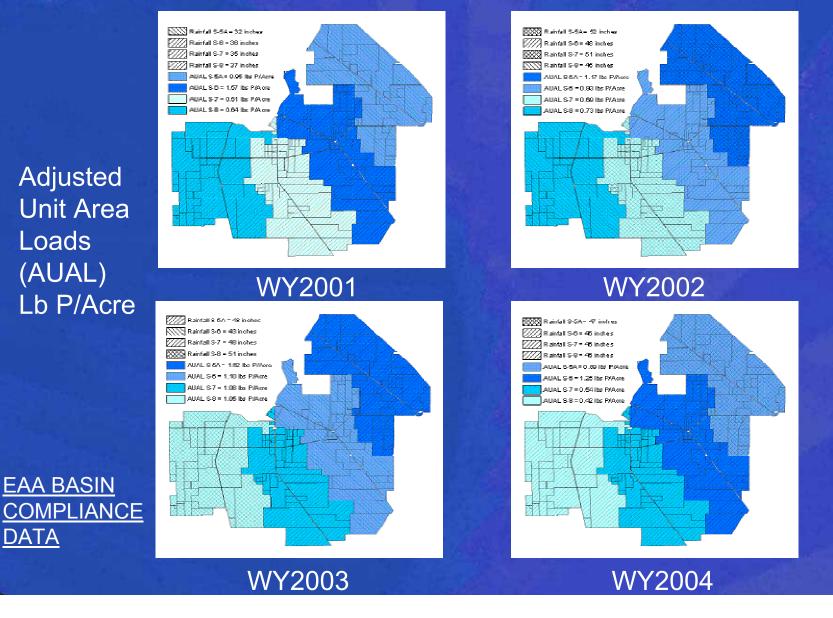
 All farms in the EAA are actively drained by means of pumps moving water from farm ditches and canals to SFWMD conveyance canals


EVERGLADES REGULATORY PROGRAM

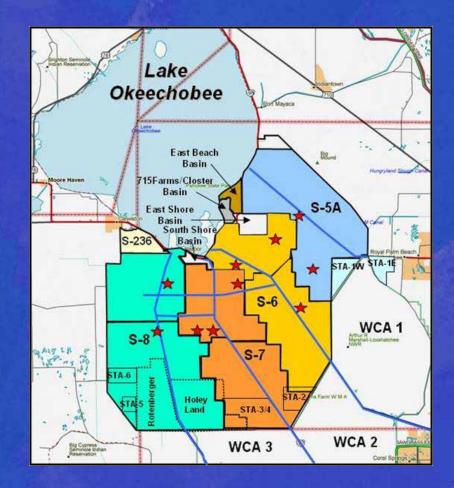
- Concerns about P leaving the EAA via drainage water
- Everglades Forever Act 1994 (and 2003)
- Goal of the regulatory program is to reduce P loads out of the EAA by 25% compared to a ten year pre-BMP base period
- BMPs in place in the EAA by February 1, 1995

Table 3 – Best Management Practices Summary and "BMP Equivalent" Points							
ВМР	PTS	DESCRIPTION					
WATER DETENTION 1/2 Inch Detained 1 Inch Detained	5 10	 water table management by controlling levels in canals, field ditches, soil profile, fallow fields, aquatic cover crop fields, prolonged crop flood; measured on a per event basis – rainfall vs. runoff 					
FERTILIZER APPLICATION CONTROL	2 1⁄2	uniform and controlled boundary fertilizer application (e.g. direct application to plant roots by banding or side-dressing; pneumatic controlled-edge application such as AIRMAX)					
FERTILIZER CONTENT CONTROLS							
Fertilizer Spill Prevention	2 1⁄2	 formal spill prevention protocols (handling and transfer) side-throw broadcast spreading near ditch banks 					
Soil Testing	5	avoid excess application by determining P levels needed					
Plant Tissue Analysis	2 1/2	avoid excess application by determining P levels needed					
Split P Application	5	apply small P portions at various times during the growing season vs. entire application at beginning to prevent excess P from washing into canals (rarely used on cane in EAA)					
Slow Release P Fertilizer	5	avoid flushing excess P from soil by using specially treated fertilizer which breaks down slowly thus releasing P to the plant over time (rarely used in EAA)					
SEDIMENT CONTROLS		EACH SEDIMENT CONTROL MUST BE CONSISTENTLY IMPLEMENTED OVER THE ENTIRE ACREAGE					
Any 2 Any 4 Any 6	2 ½ 5 10	 leveling fields ditch bank berm sediment sump in canal strong canal cleaning program field ditch drainage sump slow field ditch drainage near pumps sump upstream of drainage pump intake cover crops raised culvert bottoms veg. on ditch banks other BMP 					
OTHER Pasture Management	5	reduce cattle waste nutrients in surface water runoff by "hot spot" fencing, provide watering holes, low cattle density, shade, pasture rotation, feed & supplement rotation, etc.					
Improved Infrastructure	5	uniform drainage by increased on-farm control structures					
Urban Xeriscape	5	lower runoff & P by using plants that require less of each					
Det. Pond Littoral Zone	5	vegetative filtering area for property stormwater runoff					
Other BMP Proposed	TBD	proposed by permittee and accepted by SFWMD					

BMP PERFORMANCE


SFWMD, SFER Report 2008

P CONCENTRATION TRENDS


SFWMD, SFER Report 2008

BMP PROGRAM SUCCESSFUL P load Differences between sub-basins

OBJECTIVES

- Water quality trends (Phosphorus) in the EAA basin, subbasins, and selected farms.
- Factors that may be impacting the trends

WATER QUALITY TRENDS IN THE EAA

I. Data bases used

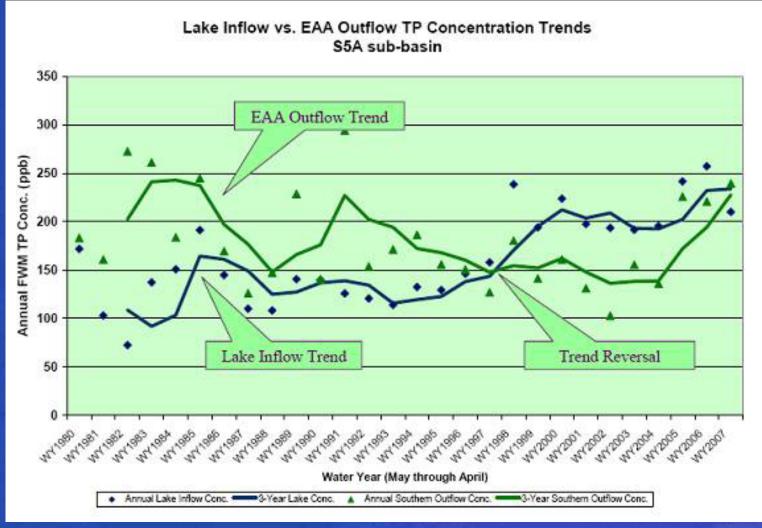
- EAA basin compliance data base (1992-2002) & Lake Okeechobee water quality – SFWMD
- 2. UF/IFAS research and monitoring data (1992-2002)
- II. Statistical Analysis
 - 1. Seasonal and non-seasonal Mann-Kendall Analysis
 - 2. Regression analysis

EAA BASIN COMPLIANCE DATA

- Current inflow and outflow points defining boundary of the EAA – monitored by SFWMD
- TP samples by automatic samples on a flow proportional basis

Trend analysis inflow & outflow FWTP (mgL⁻¹) 1992-2002

Basin†	Months	Kendall K	z-Score	z-Prob	Trend	Seasonal		
	Inflow FWTP (mg L ⁻¹)							
S5A	105	1128	5.898	0.001	increasing	yes		
S6/7	101	175	0.927	0.354	insignificant	yes		
S8	117	-175	-0.783	0.434	insignificant	yes		
EAA	117	692	1.628	0.104	insignificant	no		
			Outflow FWT	P (mg L ⁻¹)				
S5A	115	-1993	-4.815	0.001	decreasing	no		
S6/7	115	388	0.935	0.350	insignificant	no		
S8	117	-541	-2.430	0.015	decreasing	yes		
EAA	117	-745	-2.120	0.034	decreasing	no		
Basin†	Months	Kendall K	z-Score	z-Prob	Trend	Seasonal		


EAA BASIN COMPLIANCE DATA

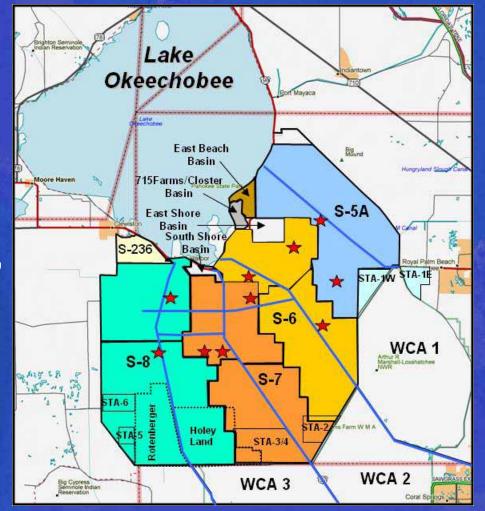
TREND ANALYSIS OUTFLOW P LOADS 1992-2002

Basin†	Months	Kendall K	z-Score	z-Prob	Trend	Seasonal
		<u> </u>	utflow Loa	id (Kg ha ⁻	<u>1)</u>	
S5A	117	-799	-3.592	0.001	decreasing	yes
S6/7	117	-340	-1.526	0.127	insignificant	yes
<mark>S8</mark>	117	-584	-2.624	0.009	decreasing	yes
EAA basin	117	-662	-2.975	0.003	decreasing	yes

EAA BASIN COMPLIANCE DATA

LAKE INFLOW & EAA OUTFLOW TP S5A SUB-BASIN

SFWMD, SFER Presentation 2008


TREND ANALYSIS LAKE INFLOW TP (1992-2006)

Structure	Ν	Kendall	Z	Z	Trend	Seasonal
	IN	К	Score	Probability	Tienu	
S6/7	268	1508	2.017	0.044	Increasing	Yes
S8	239	5946	4.813	0.001	Increasing	No
S5A	537	20033	8.938	0.001	Increasing	Yes

SFWMD DATA

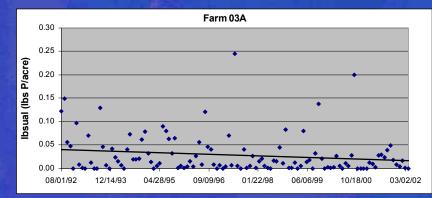
<u>UF/IFAS DATABASE</u>

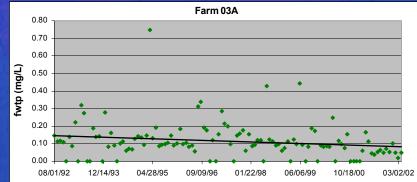
- 10 farm BMP research data set 1992-2002
- Six farms sugarcane, four mixed crops farms
- Water quality, drainage flow, rainfall, crop maps, etc.

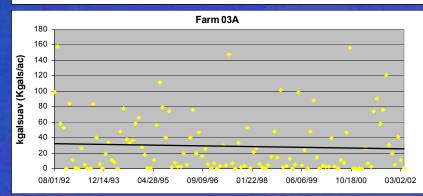
P LOAD TREND ANALYSIS-SUGARCANE FARMS

Site†	Months	Kendall K	z-Score	z-Prob	Trend	Season
004	440		2 702	0.007		
00A	118	-587	-2.703	0.007	Decreasing	Seasonal
02A	118	-427	-2.339	0.019	Decreasing	Seasonal
03A	118	-448	-2.001	0.045	Decreasing	Seasonal
04A	118	-560	-2.629	0.009	Decreasing	Seasonal
08A	110	272	1.439	0.150	Insignificant	Seasonal
09A	118	-710	-3.174	0.002	Decreasing	Seasonal

P LOAD TREND ANALYSIS-MIXED CROP FARMS


Site†	Months	Kendall K	z-Score	z-Prob	Trend	Season
01A	87	-53	-0.192	0.848	Insignificant	Non-seasonal
05A	90	-47	-0.314	0.754	Insignificant	Seasonal
06A/B	118	-447	-1.999	0.046	Decreasing	Seasonal
07A/B	118	-453	-2.051	0.040	Decreasing	Seasonal



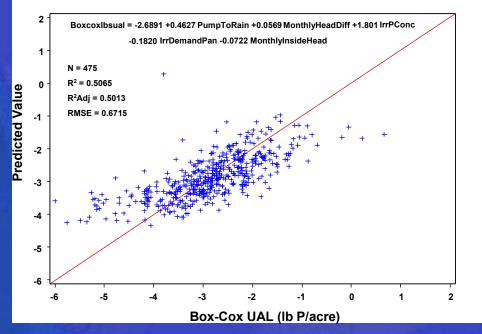

EX: SINGLE FARM TRENDS

FARM 03A

4600 acre sugarcane farm S-7 sub-basin 1.4 foot ave soil depth 1/2 inch rainfall detention 1992 to 2002 period P load decreasing P conc. decreasing Drainage volume same

UF/ IFAS DATABASE

FLOODED FALLOW FIELDS


- Flooding fallow fields in summer – common practices in mixed crop farms
- Correlation between UAL and % flooded acreage.
- Effect of flooding could not be separated from other factors

FACTORS IMPACTING P LOADS

I. Water Management

- 1. Pump to rainfall ratio
- 2. Canal levels
- 3. % flooding (mixed crop farms)
- 4. Irrigation P
 concentration
 (sugarcane farms)
 II. Soil depth location

III.Percent sugarcane acreage: reduced P loads

CONCLUSIONS

- Long term trends are decreasing in the EAA basin
- Differences between sub basins possibly due to:
 - Differences in irrigation water quality
 - Differences in water and sediment management
 - Differences in cropping practices
 - Differences in geology soil depth
 - Provide the second secon

