Integrated Ecological Modeling and Decision Analysis within the Everglades Landscape

Presentation:

1. The ecological landscape models

- 2. Model applications
- 3. Decision analysis

Everglades Landscape Model (ELM) Goals:

Develop a modeling tool for <u>integrated ecological assessment</u> of water management scenarios for Everglades restoration

- <u>Integrate</u> hydrology, biology, and nutrient cycling in spatially explicit, dynamic simulations
- <u>Synthesize</u> these interacting hydro-ecological processes at scales appropriate for regional assessments
- <u>Understand</u> and <u>predict</u> the relative responses of the landscape to different water and nutrient management scenarios
- Provide a <u>conceptual and quantitative framework</u> for collaborative field research and other modeling efforts

Integrated ecological landscape models at multiple scales

Performance of ELM v2.8, 200m resolution app (being used to evaluate restoration scenarios)

Median stage bias: -6 cm in marsh

Ecological Landscape Modeling

Regional ELM v2.8 application at 500 m grid resolution

<u>Stage</u>:

Median bias = 2 cm Median NS Efficiency = 0.60

Performance of the v2.8 500m regional application exceeds that of ELM v2.5, for stage and water quality

ELMreg500m v2.8.0

ELM v2.8, 500m app

- 1. Comparing/integrating w/ Everglades Depth Estimation Network (EDEN)
- 2. Available for supporting other ecological models (e.g., ATLSS)
- 3. <u>Can use more accurate NAVD 1988 vertical datum</u>: little effect on stages, but flows were different from equivalent sim using older datum

Ecological Landscape Modeling

Peer Reviewed...

Six-month review of ELM v2.5 (1 km) application

- Expert Panel
 - W. Mitsch (chair): wetland hydro-ecology, ecological modeling
 - L. Band: hydrologic and ecological modeling
 - C. Cerco: hydrologic and water quality modeling
- Panel's Report posted Jan 2007
 - Model is ready for application
 - Model is "...robust and will produce a unique contribution, with an integrated ecosystem paradigm, to understand and predict potential outcomes of Everglades restoration projects..."

Open Source code and data

Extensive documentation - see web site (below)

ELM Design: Integrating ecological interactions

- 1. Boxes change in response to each other
- 2. Arrows denote <u>simple model</u> <u>"mechanisms" of WHY</u> things change
- 3. Using simple "WHYs", model is not restricted to statistical "fits" of past behavior
- 4. Thus, <u>apply understanding to</u> <u>predict relative</u> performance of future restoration scenarios

General Ecosystem Model

Presentation:

- **1.** The ecological landscape models
- 2. Model applications
- 3. Decision analysis

Application: Process-Pattern interactions at century time scales

- 1. Apply current algorithms & parameters
- 2. Utilize available data on habitats, topography
 - a) Central WCA-3A Ridge & Slough classified habitats (Rutchey et al.)
 - b) Generate "synthetic" topography from USGS HAED survey points
- 3. "Nominal" conditions over 108 year simulation
- 4. Evaluate process pattern interaction at century-scales
 - a) An exploratory research application
 - b) ... to stimulate discussions and collaborations

Generating the subregional landscape...

Question: Can we simulate how the landscape pattern is maintained?

Ecological Landscape Modeling

Model Experiment Results

Elevation change:

Strong differential peat accretion between sloughs and ridges/tree islands

Bimodal (ridge vs. slough) accretion rates evolved over long time scales, tending towards equilibrium under these synthetic conditions

Application: Decompartmentalization

- 1. CERP Project to restore sheet flow, ecology
 - a) Phase I focused on Miami Canal within Water Conservation Area 3-A
 - b) Backfill entire canal, plugs along canal, or some intermediate method
- 2. Apply ELM v2.8 at 500 m resolution (> 40x finer than SFWMM)
 - a) Sensitivity of hydro-ecological patterns to different canal configs
 - b) Investigate novel Performance Measure variables
- 3. Use Multi-Criteria Decision Analysis tools for relative comparisons
 - a) 3 scenarios, multiple spatial gradients, 5 Performance Measures
 - b) Organize a complex decision
 - c) Stimulate stakeholder discussion

Scenarios (36 yr)

- 1) Base run = LORS07, w/ all structure flows from SFWMM v5.5 output
- 2) Operationally remove Miami Canal, and put 3 plugs at existing structure locations
- 3) Backfill entire Miami Canal within WCA-3A (reaches 41, 42, 43)
- For Scenarios 2) and 3): Divert Miami Canal inflows to "new" distribution canal (# 117) along northern edge
- No other operational changes from Base run (i.e., not "restoration" analysis)

Scenario Comparisons: 36-yr Mean Ponded Surface Water Depths ... some redistribution within WCA-3A (< ~6")

Ecological Landscape Modeling

Scenario Comparisons: 36-yr Mean TP Concentrations in Surface Water ... almost no difference

Ecological Landscape Modeling

Scenario Comparisons: 36-yr Mean Chloride Concentration in Surface Water ... redistributions within WCA-3A, some within 3B

Ecological Landscape Modeling

Scenario Comparisons: 36-yr Mean Surface Water Flow Velocities ... substantial redistribution within WCA-3A

Ecological Landscape Modeling

Surface water velocity - LORS07 Base Run

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Ecological Landscape Modeling

Ecological Landscape Modeling

Presentation:

- **1.** The ecological landscape models
- 2. Model applications
- **3.** Decision analysis

Challenges in Current Decision-Making Processes

Ecological Landscape Modeling

Evolving Decision-Making Processes

ELM-Decision Analysis Example

Alternatives

- Lake Okeechobee Regulation Schedule 2007 (Baseline)
- Operationally remove the Miami Canal
- Delete the Miami Canal from WCA-3A (Backfill)

ELM-Simulated Decision Criteria

- Surface Water Velocity water flow velocity index (Velocity)
- Dry Index Mean daily duration of dry soil in upper horizon (days)
- Mean daily surface water chloride concentration (CL, g/L)
- Phosphorus accumulation (mg/m²/yr)
- Extreme "Dry Downs"
 - Maximum unsaturated zone depth (m)
 - Mean unsaturated zone depths that exceeded a threshold (m)
- Four Spatial Zones: WC3A-Flow Transects 53 and 52, Miami Canal (Middle), Miami Canal (South)

Example Decision Analysis Results

Equal weights for objectives, equal weights for zones, linear value functions

Ecological Landscape Modeling

Example Decision Analysis Results

Surface Water and Marsh Area emphasis on weights, linear value functions

http://ecolandmod.ifas.ufl.edu

Discussion

- Modeling experiment to integrate different sets of ecosystem data:
 - Our "decision" was quite sensitive to criteria weighting and spatial zone choice.
 - ELM can provide useful information into structured decision analysis.
 - Cost was no object! (Proof of concept)
- Next steps: evaluate altered managed flows under different canal configurations