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Mechanistic vs. empirical modeling approaches

Mechanistic models are based on the underlying physics and chemistry
governing the processes and seek to describe phenomena with transferable
equations that can be used predictively.

This approach is contrasted with empirical methods that are based on
observed relationships between variables that may not be transferable in
space or time.

The first step in developing a mechanistic model 1s to construct a
conceptual model that defines the key interactions between process
variables based on fundamental knowledge.

Each interaction is then defined mathematically (e.g., first order, Monod,
ete).

Parameters for these relationships must then be obtained from experimental
data.

Finally the model should be validated against process data.
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Model development in four easy steps...

1) Conceptual model, 2) Mathematical model, 3) Parameters, 4) Validate
[4.5) Predict]
Same steps whether empirical or mechanistic, differences appear in
resilience to perturbations.

— If model parameter (e.g., settling coefficient) is a function of load or vegetation

community, then when these change, parameter must change

What level of complexity i1s warranted? Perhaps consider model utility
(management). Common to see model fits to data, but what predictions are
desired? What hypotheses can be tested?

— What if the external load is directly reduced? (e.g., Hg or TP) What about the
effects of other controlling parameters? (e.g., SO4)

But 1s 1t always mechanistic processes vs empirical?

— Most models in use are hybrids where some processes are
mechanistically/empirically described
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Why pursue more complex models?

* Advantages of mechanistic approaches
— not much data are required for model development

— the model development process engenders “deep”
knowledge of the system, and

— the model parameters have physical meanings

* Disadvantages
— development can be very time consuming and costly
(but fundamentals are fundamentals)

— solving the equations requires more sophisticated numerical
techniques than simpler empirical approaches
(perhaps big problems are worth a bit more effort)

— adding new functionality requires fundamental
understanding of the underlying processes
(but new functionality can be added)
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A well known Everglades empirical model

Chemical engineering approach to phosphorus cycling in
treatment wetlands: first order settling (e.g., Kadlec &

Knight)
1) Conceptual Model I I
L saip |
2) Mathematlcal Model | 1 Nk (C1 e
C,, C, = inlet/outlet concentrations 11 a = ? ( C, — C%)

C* = background concentration
k = settling rate
q = hydraulic loading rate
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Mechanistic model examples

Hg
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Everglades Mercury Cycling Model (E-MCM)

* Dynamic process model to predict changes in mercury cycling and its
biomagnification through aquatic food webs based on constructing a mercury mass
balance. It simulates three different mercury forms and their interactions.

* The model includes a single compartment in the vertical for the water column and
multiple sediment layers. The model can be applied as either single cell (i.e., unit
wetland) or as a series of multiple linked cells.

MCM

(Developed for
temperate
lakes)
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Overview of Hg Cycling in E-MCM
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Macrophyte Hg fluxes

Hg(ll) reduced in via plant is
transpired

Litter picks up atmospheric
Hg (dry dep, RGM) and
takes it to water column

Throughfall washes off
during precip events

£L

Some red
Hg(ll) ente
plants



Primary study sites where E-MCM has been applied
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Predicted and observed total mercury concentrations
(ng/L) in ENR surface waters: 4 years (unfiltered)
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E-MCM calibration for Hg
Tissue Concentrations in
Largemouth Bass at Site
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Figure 3. Total Hg emissions estimated for south Florida (Dade, Broward. and Palm Beach counties) for 1980 through
2000, Emissions based on plant operating data and emission factors. Source categories include municipal waste
combustion (MWC), power generation. medical waste incineration (MWI). and sugar processing. From RMB
Associates (2002).
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Mechanistic Hg modeling considerations

 Surface sediments required to be very thin (3mm) to
match observations

— thin sediment = minimal buffering and leads to rapid water-
column response to loading

— quasi-empirical as perhaps other processes need refining

* Both Hg and SO4 loads were reduced. Model
scenari0s where either Hg or SO4 load was constant
(not reduced) were evaluated

— Hg reduction was found to be secondary to SO4 reduction
in leading to reduced fish biomass Hg

— But SO4 model 1s somewhat uncertain so hard to determine
relative effects with confidence at this time
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Mechanistic model examples

and P
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* Session 1: Poster 65 (Rajendra Paudel)

Spatially distributed flow and phosphorus
dynamics in STA1IW

* Session 2, Posters 54/55 (Joong-Hyuk Min)
Spatially distributed flow and phosphorus
dynamics in STA 5/Ridge and slough



Appropriate level of complexity

Simplest = one-parameter settling rate
Complex = ecological succession models

Intermediate = some physically-based
processes, with lumping

Coupled hydrologic and water quality
modeling = many, many parameters
“Make everything as simple as possible.

But not simpler.”
Albert Einstein
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Mesocosm Study (DB Environmental, 2006)

* Soil Depth, 20 cm
* Water Depth 40 cm

e Total Soil P

— Cell 4 inflow region: 852 mg P kg!
— Cell 4 outflow region: 273 mg P kg!

Outdoor Mesocosms

SRP =) No Macrophytes

Surface Area 1 m?
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Mesocosm Study: Experimental and Model
Results
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Managing South Florida treatment wetlands (STAs)

* STAs intercept agricultural runoff to reduce P load to Everglades
* What is the long-term sustainability of this $1B investment?

* Conceptual map of a management model
— Tool for decision support
— Scenario testing
— Framework to integrate understanding and incorporate new understanding
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STA1W Cell 4 simple ‘reactor model’— uptake and
release
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Figure 7. Comparison of cumulative phosphorus removal from SFWMD water sampling of inflow and outflow waters
in Cell 4, to the phosphorus removal predicted by the model. SFAVMD is South Florida Water Management District.
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Figure 9. Measured and predicted change in soil P storage over time in the inflow and outflow region of Cell 4,
as determined from soil phosphorus content and bulk density measurements of the newly accrued soil material
{lrons, 2001). Values are mean + 1 standard deviation of four soils per region.



STA1W-Cell 4: Hydrodynamic model
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Concentration [mg)

STA1W-Cell4:
Phosphorus model

ac, =—ks,Cs';+l% S
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Animation of Total soil P distribution

Frame 001 | 25 Jul 2008 |
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Figure 14. Accumulated total soil phosphorus from samples collected at the end of 2000.
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Total P concentration in WCA-2A soil (0-10 cm)

Total P (mglkg)
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Total P concentration in WCA-2A soil (0-10 cm)
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Summary

Mechanistic model development promotes better process
understanding

Process complexity should be represented appropriately
— Flexible approaches recommended

Capture hydrologic and biogeochemical complexity with
spatially distributed models

Hg deposition and SO4 loads reduced, fish concentration
declined

 uncertain: relative significance of SO4
P accumulation 1n soils of treatment wetlands

— What is long-term fate of P and treatment wetland lifespan?
 uncertain: permanent burial/release of soil P



