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Mechanistic vs. empirical modeling approaches

• Mechanistic models are based on the underlying physics and chemistry 
governing the processes and seek to describe phenomena with transferable
equations that can be used predictively. 

• This approach is contrasted with empirical methods that are based on 
observed relationships between variables that may not be transferable in 
space or time. 

• The first step in developing a mechanistic model is to construct a 
conceptual model that defines the key interactions between process 
variables based on fundamental knowledge. 

• Each interaction is then defined mathematically (e.g., first order, Monod, 
etc). 

• Parameters for these relationships must then be obtained from experimental 
data. 

• Finally the model should be validated against process data. 
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Model development in four easy steps…

• 1) Conceptual model, 2) Mathematical model, 3) Parameters, 4) Validate 
[4.5) Predict]

• Same steps whether empirical or mechanistic, differences appear in 
resilience to perturbations.
– If model parameter (e.g., settling coefficient) is a function of load or vegetation 

community, then when these change, parameter must change
• What level of complexity is warranted? Perhaps consider model utility 

(management). Common to see model fits to data, but what predictions are 
desired? What hypotheses can be tested? 

– What if the external load is directly reduced? (e.g., Hg or TP) What about the 
effects of other controlling parameters? (e.g., SO4)

• But is it always mechanistic processes vs empirical?
– Most models in use are hybrids where some processes are 

mechanistically/empirically described
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Why pursue more complex models?

• Advantages of mechanistic approaches
– not much data are required for model development
– the model development process engenders “deep”

knowledge of the system, and 
– the model parameters have physical meanings

• Disadvantages 
– development can be very time consuming and costly

(but fundamentals are fundamentals)
– solving the equations requires more sophisticated numerical 

techniques than simpler empirical approaches
(perhaps big problems are worth a bit more effort)

– adding new functionality requires fundamental 
understanding of the underlying processes

(but new functionality _can be_ added)
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A well known Everglades empirical model

Chemical engineering approach to phosphorus cycling in 
treatment wetlands: first order settling (e.g., Kadlec & 
Knight)

1) Conceptual Model

2) Mathematical Model
C1, C2 = inlet/outlet concentrations
C* = background concentration
k = settling rate
q = hydraulic loading rate

Water 
column P

Peat Accretion

Water 
column P

Soil P
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Mechanistic model examples

Hg and P
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Everglades Mercury Cycling Model (E-MCM)

• Dynamic process model to predict changes in mercury cycling and its 
biomagnification through aquatic food webs based on constructing a mercury mass 
balance.  It simulates three different mercury forms and their interactions.  

• The model includes a single compartment in the vertical for the water column and 
multiple sediment layers. The model can be applied as either single cell (i.e., unit 
wetland) or as a series of multiple linked cells.
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Overview of Hg Cycling in E-MCM





Periphyton
Litter picks up atmospheric 
Hg (dry dep, RGM)  and 
takes it to water column

Throughfall washes off 
during precip events

Roots pick up Hg(II), 
MeHg, Hg0 from 
porewater

Some reduction occurs as 
Hg(II) enters/passes through 
plants

Plants treated like single 
compartment with some extra 
Hg on leaves

Macrophyte Hg fluxes
Hg(II) reduced in via plant is 
transpired



Primary study sites where E-MCM has been applied



Predicted and observed total mercury concentrations 
(ng/L) in ENR surface waters: 4 years (unfiltered)
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E-MCM calibration for Hg 
Tissue Concentrations in 
Largemouth Bass at Site 
3A-15. 

Age Cohort 0-1 years

Age Cohort 1-2 years
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Mechanistic Hg modeling considerations

• Surface sediments required to be very thin (3mm) to 
match observations
– thin sediment = minimal buffering and leads to rapid water-

column response to loading
– quasi-empirical as perhaps other processes need refining

• Both Hg and SO4 loads were reduced. Model 
scenarios where either Hg or SO4 load was constant 
(not reduced) were evaluated
– Hg reduction was found to be secondary to SO4 reduction 

in leading to reduced fish biomass Hg
– But SO4 model is somewhat uncertain so hard to determine 

relative effects with confidence at this time
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Mechanistic model examples

Hg and P



• Session 1: Poster 65 (Rajendra Paudel) 
Spatially distributed flow and phosphorus 
dynamics in STA1W

• Session 2, Posters 54/55 (Joong-Hyuk Min) 
Spatially distributed flow and phosphorus 
dynamics in STA 5/Ridge and slough



Appropriate level of complexity

• Simplest = one-parameter settling rate
• Complex = ecological succession models
• Intermediate = some physically-based 

processes, with lumping
• Coupled hydrologic and water quality 

modeling = many, many parameters
“Make everything as simple as possible.

But not simpler.”
Albert Einstein





Mesocosm Study (DB Environmental, 2006)
• Soil Depth, 20 cm
• Water Depth 40 cm
• Total Soil P

– Cell 4 inflow region:   852 mg P kg-1

– Cell 4 outflow region: 273 mg P kg-1

Outdoor Mesocosms
No Macrophytes
Surface Area 1 m2

Water Column

SRP PP
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Mesocosm Study: Experimental and Model 
Results
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• Level 1 processes: 
same parameters

• kox = 0.0015 day-1

• kp_growth = 1 day-1

• kp_sn = 0.28 day-1

• Only difference 
between 2 cases is 
initial soil P



Managing South Florida treatment wetlands (STAs)
• STAs intercept agricultural runoff to reduce P load to Everglades
• What is the long-term sustainability of this $1B investment?
• Conceptual map of a management model

– Tool for decision support
– Scenario testing
– Framework to integrate understanding and incorporate new understanding



STA1W Cell 4 simple ‘reactor model’– uptake and 
release





STA1W-Cell 4: Hydrodynamic model

Field tracer test (Dierberg et al., 
2005, Ecol. Eng.

Tracer test 
simulation
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STA1W-Cell4: 
Phosphorus model

Simulated soil P after 5 years



Animation of Total soil P distribution
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Total P concentration in WCA-2A soil (0-10 cm)

1990 1998
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Total P concentration in WCA-2A soil (0-10 cm)

T = 20 yrs T = 30 yrs
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T = 3, 15, 39, 66, 100, 133 years



Summary
• Mechanistic model development promotes better process 

understanding
• Process complexity should be represented appropriately

– Flexible approaches recommended
• Capture hydrologic and biogeochemical complexity with 

spatially distributed models
• Hg deposition and SO4 loads reduced, fish concentration 

declined
• uncertain: relative significance of SO4

• P accumulation in soils of treatment wetlands 
– What is long-term fate of P and treatment wetland lifespan?

• uncertain: permanent burial/release of soil P


