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Central Premise

• Hydrology is the keystone driver of ecological 
processes in the Everglades

• Ecological processes in South Florida exert unusually 
large reciprocal control on hydrology and water quality

• Ergo: As biological processes respond to hydrological 
change, they engender intercessory (thus indirect) 
effects on water and soil chemistry



Ordering Indirect Effects

Hydrologic
Change

Water/Soil 
Chemistry

Change

Process A

Process B Process C

0th Order
1st Order
2nd Order
3rd Order



Local 
Examples

Ross et al. [2003]

Davis et al. [2005]



Unexplained Observation: 
Why are biogenic controls on landform and 

geochemistry so strong in S. Florida?

• Autogenic feedbacks between water levels and plant 
communities create bi-modal (tri-modal) patterns in the ridge-
slough (tree-island) (Larsen et al. 2007, Givnish et al. 2007) 

• Autogenic feedbacks between P and calcite create regime 
shifts in periphyton communities (Dong et al. 2002), modulated 
by CO2 production and diffusion (Browder et al. 1994)

• Autogenic feedbacks between organic acidity production and 
calcite dissolution create strands and cypress domes (Spangler)



0th Order Effects: Flows and Loads
[Direct effects]

• Discharge is a power law function of water 
level

• Concentrations appear to be nominally 
independent of water level

• Fluxes scale with hydrologic change



1st Order Indirect Effects

• Reduced/extended inundation affects 
peatland accretion vs. oxidation dynamics

• Reduced freshwater discharge alters coastal 
salinity gradients

• Decreased flow velocity changes particle 
entrainment and deposition



Total Mercury and Soil Oxidation
• Mechanism: Peat oxidation mineralizes trace metals (and 

nutrients) that elevate environmental concentrations.

Cohen et al. [in review]Stober et al. [2001] Scheidt & Kalla [2007]



Flow, Salinity Gradients 
and Water Chemistry

• Clear effects of changes in flow on salinity at creek 
mouths

• Mangrove encroachment up tidally influence 
channels suggests combined effects of sea level rise 
and reduced freshwater flow; Increased incidence 
of marine mollusks in soils (Ross et al. 2000)

• Advection of P-rich GoM water into Florida Bay (and 
southern Everglades) (Sutula et al. 2003)

Fitterman 1999 [USGS]
Sutula et al. [2003]



Hydrologically Induced Nutrient Gradients

• Ridges have higher N and P per 
mass than sloughs in 
hydrologically “conserved” areas

– Stoichiometry is strongly 
different

• Pattern declines with hydrologic 
impairment

• Pattern is more pronounced (for 
soil and porewater) when tree 
islands are included

• Mechanisms? 
– 1st Order?  2nd Order?  3rd Order?Ross et al. [2006]

Soil TN Soil TP Soil N:P

D. Watts [unpublished data]



Velocity, Entrainment, Deposition
•One proposed mechanism 

for creation and maintenance 
of patterned landscape

– Local hydraulic velocities are 
controlled by large-scale flows 
and local-scale vegetation 
(Leonard et al. 2006, but see 
Jorczak 2006)

• Ridges ~ 0.3 cm/s
• Sloughs ~ 0.5 cm/s

– Entrainment and deposition 
may vary with community (drag 
coefficients) which shift regimes 
with hydroperiod

– Changes in entrainment & 
deposition and hydroperiod 
induce large scale feedbacks to 
solute transport (e.g., oxygen, 
SRP)

Larsen et al. [2007]



2nd Order Indirect Effects

• Hydrology → Community Composition →
Water Chemistry

• Hydrology → Community Composition → Soil 
Element Budgets 

• Hydrology → Peat Fire Frequency → Water 
Chemistry



Hydrologic Change and Community Composition

• Hydrologic gradient from north of Alligator Alley 
(WCA3AN - dry) to Tamiami Trail (WCA3AS - wet)
– Changes in prevalence of ridge, slough and wet prairie 

– Loss of landscape morphology (leading vegetation change)
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Community Controls on Photolysis: 
Implications of Landscape Leveling

•Photolysis (abiotic 
DOC loss) is a C sink

–Photolysis rate is 
species specific

–Photon flux is 
community specific

–DOC conc. is 
community sensitive

Osborne et al. [in preparation]

Osborne and Reddy 
[in preparation]



Ridge-Slough Corollary: Changes in 
Landscape Calcium Budgets

• Conserved RS 
landscape maintains 
strong (and largely 
unexpected) Ca 
gradients from ridges 
to sloughs

• Hydrologic change 
appears to erode this 
gradient
– Effects on pH?

D. Watts [unpublished data]

To
ta

l C
al

ci
um

 (m
g/

kg
)



Drying, Fire Frequency and 
Nutrient/Metal Mineralization

• Rotenberger Fire in 2006 (Zamorano et al. 2008)
– Surface fires increased mineral P fraction (28 → 65%)

– Peat fire raised mineral P fraction more (28 → 87%)

Smith et al. 2003 [JEM]



Emergent Vegetation Success and Periphyton

• Thomas et al. (2006) 
document effects of shade 
on periphyton production

– Loss of diel DO production
– Loss of calcite

• McCormick et al. (1998) 
and Cohen and Lamsal 
(unpublished) showed 
strong seasonal component 
to algal composition

– Wetter periods dominated 
by cyanophytes

– Implications for N 
fixation? (Inglett et al. 
2004)  P dynamics? 
(McCormick et al. 1996)

Cohen and Lamsal 2008 [SFWMD]



To 3rd Order Indirect Effects and Beyond…

• Hydrology → Community Composition → OM 
Quality → Water Chemistry/Hydrology

• Hydrology → Predator dispersal → Nesting 
success → Nutrient subsidies

• Hydrology → Algal Species → Calcite 
encrustation → P chemistry



Inundation and 
Peat Quality

• Hydrology induces 
community shifts

• Community changes in 
peat stoichiometry
– C:Nridges ~ 18:1
– C:Nsloughs ~ 13:1

• Peat quality affects 
mineralization dynamics 
which can affect both 
water chemistry AND 
hydrology 
(biogeomorphology)

Cohen et al. in review [SSSAJ]



Periphyton – A Keystone in Higher 
Order Indirect Effects

• Clear nutrient effects
– Community composition shifts away from 

calcite encrusting mats towards desmid rich 
communities which do not form mats

• Evidence of hydrologic effects:
– Depth matters (calcareous periphyton absent 

above ~ 60 cm depth)
• pCO2 α CaCO3 conc. needed for encrusting 
• pCO2 increases with depth due to diffusion 

constraints (deep water)

– Duration matters (calcareous periphyton 
found in short hydroperiod marshes)

• pCO2 decreases when decomposition occurs 
in air (short hydroperiod)

• Reciprocal relationships?
– Does hydrologic change reduce P binding 

locally (is that P refractory)? Changes in 
dissolved oxygen?  Altered incidence of 
undersaturated water? Browder et al. 1994 [in Davis and Ogden]



Water Levels, Predator Occupancy and 
P Subsidies from Tree Islands

• Water level controls terrestrial predator access [Frederick and 
Collopy 1989]
– 5-10 cm of inundation limits terrestrial predator access to tree islands

• Terrestrial predators control nesting site selection [Frederick 
and Collopy 1989]
– 69% of nest failures due to predation by terrestrial predators (snakes, 

raccoons, foxes, rats)

• Birds concentrate P (and N) [Frederick and Powell 1994]
– Historical P loading at nesting sites was 120 g P/m2/yr (3000 times 

atmospheric deposition)
– Contemporary populations yield less (0.9 g P/m2/yr)
– Legacy effects?

• Tree Islands are epicenters of local autogenic P enrichment 
gradients [Givnish et al. 2007]
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Summary

• The South Florida ecosystem exhibits myriad ways in which 
biota intercede to exert reciprocal control on water quality 
(and indeed hydrology)
– Water quantity links to water quality are above 0th Order

• Interpretation of any given water or soil quality observation 
needs to account for local and regional patterns
– Selection from amongst a multitude of potential mechanisms
– Evidence is clear in some cases, speculative in others

• Note: Reverse effects (water quality effects on hydrology) are 
also noted
– Nutrient enrichment alters peat accretion rates, which alters flow and 

inundation regimes [Reddy and DeBusk 1993]
– Nutrient enrichment impacts peat pop-up probability, affecting local 

hydrologic gradients
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Questions?  
Pet indirect effects?

mjc@ufl.edu
L.V. Korhnak


