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Central Premise

e Hydrology is the keystone driver of ecological
processes in the Everglades

e Ecological processes in South Florida exert unusually
large reciprocal control on hydrology and water quality

As biological processes respond to hydrological
change, they engender intercessory (thus indirect)
effects on water and soil chemistry




Ordering Indirect Effects
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Unexplained Observation:
Why are biogenic controls on landform and
geochemistry so strong in S. Florida?

e Autogenic feedbacks between water levels and plant
communities create bi-modal (tri-modal) patterns in the ridge-
slough (tree-island) (Larsen et al. 2007, Givnish et al. 2007)

e Autogenic feedbacks between P and calcite create regime
shifts in periphyton communities (Dong et al. 2002), modulated
by CO, production and diffusion (Browder et al. 1994)

e Autogenic feedbacks between organic acidity production and
calcite dissolution create strands and cypress domes (Spangler)




Oth Order Effects: Flows and Loads
[Direct effects]

e Discharge is a power law function of water
level

e Concentrations appear to be nominally

independent of water level

e Fluxes scale with hydrologic change




15t Order Indirect Effects
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e Decreased flow velocity changes particle
entrainment and deposition




Total Mercury and Soil Oxidation

e Mechanism: Peat oxidation mineralizes trace metals (and
nutrients) that elevate environmental concentrations.
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Flow, Salinity Gradients
and Water Chemistry

Clear effects of changes in flow on salinity at creek
mouths
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Hydrologically Induced Nutrient Gradients
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e Ridges have higher N and P per
mass than sloughs in
hydrologically “conserved” areas

— Stoichiometry is strongly
different

e Pattern declines with hydrologic
impairment

e Pattern is more pronounced (for
soil and porewater) when tree
islands are included

e Mechanisms?
— 1t Order? 2" Order? 3" Order?




Velocity, Entrainment, Deposition

e One proposed mechanism
for creation and maintenance
of patterned landscape

— Local hydraulic velocities are
controlled by large-scale flows
and local-scale vegetation
(Leonard et al. 2006, but see
Jorczak 2006)

e Ridges ~ 0.3 cm/s
¢ Sloughs ~ 0.5 cm/s

— Entrainment and deposition
may vary with community (drag
coefficients) which shift regimes
with hydroperiod

— Changes in entrainment &
deposition and hydroperiod
induce large scale feedbacks to
solute transport (e.g., oxygen,
SRP)
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2"d Order Indirect Effects

e Hydrology > Community Composition -
Water Chemistry

e Hydrology - Community Composition = Soil
Element Budgets

e Hydrology - Peat Fire Frequency - Water
Chemistry




Hydrologic Change and Community Composition

e Hydrologic gradient from north of Alligator Alley
(WCA3AN - dry) to Tamiami Trail (WCA3AS - wet)

— Changes in prevalence of ridge, slough and wet prairie
— Loss of landscape morphology (leading vegetation change)

B Emergent Wet Prairie B Deep Water Slough B Sawgrass Ridge

Sampling Location




Community Controls on Photolysis:
Implications of Landscape Leveling

0

* Photolysis (abiotic | e
DOC loss) is a C sink @ siovgh

—Photolysis rate is
species specific

w e
an o
1 1

w
v =1
1

[~
=1

—Photon flux is
community specific

—DOC conc. is
community sensitive

DOC Concentration (mg/L)

5
10
5

[0% C Loss
M Photolysis Rate [ g




Ridge-Slough Corollary: Changes in
Landscape Calcium Budgets

e Conserved RS
landscape maintains
strong (and largely
unexpected) Ca _
gradients from ridges o } {
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to sloughs

Hydrologic change
appears to erode this
gradient

— Effects on pH?
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Drying, Fire Frequency and
Nutrient/Metal Mineralization

e Rotenberger Fire in 2006 (Zamorano et al. 2008)
— Surface fires increased mineral P fraction (28 - 65%)
— Peat fire raised mineral P fraction more (28 - 87%)
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water level (ft.)




Emergent Vegetation Success and Periphyton

e Thomas et al. (2006) —
document effects of shade [T R LoD ] e
on periphyton production

— Loss of diel DO production
— Loss of calcite

McCormick et al. (1998) n

and Cohen and Lamsal T dreegicpartition
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strong seasonal component E Bt
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— Wetter periods dominated
by cyanophytes

— Implications for N PSS —— v e
fixation? (Inglett et al. i hydrologic Partiton ' Hydrologic Partition
2004) P dynamics?
(McCormick et al. 1996)
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To 3™ Order Indirect Effects and Beyond...

e Hydrology - Community Composition - OM
Quality > Water Chemistry/Hydrology

e Hydrology - Predator dispersal - Nesting
success - Nutrient subsidies

e Hydrology - Algal Species - Calcite
encrustation - P chemistry




Inundation and
Peat Quality

Hydrology induces
community shifts

Community changes in
peat stoichiometry

— C:N ~18:1

— CiNgougns ~ 13:1

Peat quality affects
mineralization dynamics
which can affect both
water chemistry AND

hydrology
(biogeomorphology)
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Periphyton — A Keystone in Higher
Order Indirect Effects

¢ Clear nutrient effects

— Community composition shifts away from
. . q 9 W —
calcite encrusting mats towards desmid rich EOEEEEEGRS SRR
_ . UNSATURATED CONTINUOUS FLOODING EUTROPHIC
communities which do not form mats 12mo.

Desmid=rich
e Evidence of hydrologic effects:
— Depth matters (calcareous periphyton absent
above ~ 60 cm depth)
e pCO, a CaCO;, conc. needed for encrusting
e pCO, increases with depth due to diffusion
constraints (deep water)
— Duration matters (calcareous periphyton
found in short hydroperiod marshes)

e pCO, decreases when decomposition occurs
in air (short hydroperiod)
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e Reciprocal relationships? Calcareous

— Does hydrologic change reduce P binding
locally (is that P refractory)? Changes in JERY SHORT HYOROPERIOD
dissolved oxygen? Altered incidence of CALCAREOUS PERIPHYTON
undersaturated water?

INCREASING HYDROPERIOD, DEPTH & PHOSPHORUS




Water Levels, Predator Occupancy and
P Subsidies from Tree Islands

Water level controls terrestrial predator access [Frederick and
Collopy 1989]

— 5-10 cm of inundation limits terrestrial predator access to tree islands

Terrestrial predators control nesting site selection [Frederick
and Collopy 1989]

— 69% of nest failures due to predation by terrestrial predators (snakes,
raccoons, foxes, rats)

Birds concentrate P (and N) [Frederick and Powell 1994]

— Historical P loading at nesting sites was 120 g P/m?/yr (3000 times
atmospheric deposition)

— Contemporary populations yield less (0.9 g P/m?/yr)
— Legacy effects?

Tree Islands are epicenters of local autogenic P enrichment
gradients [Givnish et al. 2007]




Influence Diagram Version

Nesting
Success

Negative? Local
Tree Island P Nutrient
Inundation Gradients
Predator
Access

Homeostatic feedback




Summary

e The South Florida ecosystem exhibits myriad ways in which

biota intercede to exert reciprocal control on water quality
(and indeed hydrology)

— Water quantity links to water quality are above 0" Order
e |nterpretation of any given water or soil quality observation
needs to account for local and regional patterns
— Selection from amongst a multitude of potential mechanisms
— Evidence is clear in some cases, speculative in others

e Note: Reverse effects (water quality effects on hydrology) are
also noted

— Nutrient enrichment alters peat accretion rates, which alters flow and
inundation regimes [Reddy and DeBusk 1993]

— Nutrient enrichment impacts peat pop-up probability, affecting local
hydrologic gradients
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