130 Years of Ecohydrological Change in the Everglades: What's Different and What's Not, and Why It Matters

GEER Conference 2008

Christopher McVoy, Martha Nungesser, Fabiola Santamaria

Everglades Division South Florida Water Management District West Palm Beach, FL

Acknowledgements

Martha Nungesser and Fabiola Santamaria (SFWMD)

Winifred Said, John VanArman, and Jayantha Obeysekera (SFWMD)

Disclaimer I

The thoughts presented here are mine and my coauthors. They do not represent the positions or policies of my employer, the SFWMD. That said, I would like to thank the SFWMD for its generous support of our Everglades research.

Disclaimer II

Contains no global warming!

Thoughts Toward a Vision of Everglades Restoration (a thought experiment)

Summary:

A sizable portion of the remaining Everglades could in fact be restored to close to pre-drainage hydrologic conditions, *and* there are good sustainability arguments for doing so, *but* we should be conscious of the transient "bumps" that could be expected.

Premises

- At the scale of 10², possibly 10³ years, the pre-drainage Everglades was relatively stable, e.g., the Sawgrass Plains were dominated by sawgrass, the Ridge and Slough landscape included ridges, sloughs and tree islands in a directional pattern, the Marl Marshes were slightly higher/drier landscapes.
- 2) Anthropogenic water management has displaced the remaining Everglades into a new condition.
- 3) This new condition is not only different, but unstable, following an undesirable trajectory, e.g., Ridge & Slough turning into undifferentiated sawgrass.

- 1) The remaining Everglades need to be returned to a desirable trajectory.
- 2) Restoring to pre-drainage hydrologic conditions has the <u>highest probability</u> of yielding a desirable, and sustainable, trajectory.

Implications

If a return to pre-drainage conditions has highest probability of success, then we need to know these pre-drainage hydrologic conditions, and to clearly understand the difference between them and current hydrologic conditions.

Pre-Drainage Hydrological Conditions – Regional

Outflows from Lake Okeechobee: continued throughout much of most years

Sawgrass Plains: slowly released water downstream

- Eastern (and Western) Flatwoods: seasonal ponds

R&S landscape: extended directly up to bordering uplands

- Shark Slough: same as R&S landscape further upstream

Marl Marshes: bordering, slightly higher floodplain areas

Pre-Drainage Hydrological Conditions – Sloughs

Slough water depths:

- -- 3 ft (90 cm) typ. max; 1 ft (30 cm) typ min
- -- Sloughs typically did not dry out
- -- Floce typically did not dry down and compact
- -- White water lily ubiquitous; Spatterdock frequent
- -- Usually too deep for many wading birds
- -- Bass apparently widespread

Sawgrass Ridges:

- -- 1.5-2 ft (45-60 cm) higher
 - than sloughs
- -- seasonally terrestrial

Tree Islands:

- -- many boggy; wet for camping
- -- red bay, whitewood, myrtle

Pre-Drainage Hydrological Conditions – Marl Marshes

Vegetation:

- -- Sawgrass, "open Everglades," "few scattering islands" (1885-6)
- -- Sawgrass, "Round Water Grass," Pickerel Weed, Spatterdock, White Water Lily (1917)

Soil:

-- "Marl," "Muck" or "Mucky;" 0.5-1.5 feet (15-45 cm) thick

Water Depths:

-- "15-30 inches" (38-76 cm)

Pre-Drainage Hydrological Conditions – Slopes

Water surface (relative to ground surface):

- -- parallel
- -- depths very similar throughout landscape
- -- seasonal rise and fall, synchronous throughout landscape
- -- any threshold/optimal depths were temporary

Pre-Drainage Hydrological Conditions – Summary

- Ridges and sloughs patterning apparently persisted
- Tree islands apparently persisted
- Marl Marshes a degree of peat probably was present
- Marl Marshes flora possibly less diverse
- Sloughs deep usually too deep for most wading bird foraging
- Sloughs deep wet prairie species infrequent; snail kite implications?
- Sloughs deep continuous hydroperiod; drydowns infrequent
- Water flows uniformly spread across landscape; constrictions local & small scale
- Freshwater flows to Florida Bay likely substantial

Current Hydrological Conditions - Discontinuities

Current Hydrological Conditions - Discontinuities

<u>Current Hydrological Conditions – Loss of Landscape Structure</u>

<u>Current Hydrological Conditions – Loss of Landscape Structure</u>

M. Nungesser

Current Hydrological Conditions – Artificial Depth Gradients

Current Hydrological Conditions – Artificial Depth Gradients

Water surface (relative to ground surface):

- -- "wedges"
- -- depths significantly different within and between compartments
- -- moving fronts of water depth

Current Conditions – Summary

- Ridges and Sloughs patterning being lost (vert. and horiz.)
- Tree islands height loss, species lost
- Marl Marshes drier; floral shifts
- Water depths both too deep and too shallow
- Large areas too dry (e.g., ENP, northern WCA 3A, possibly WCA 3B)
- Sloughs dry out too frequently; reduction in larger fish
- White water lilies (Nymphaea odorata) infrequent in Shark Slough
- Spatterdock (Nuphar advena) almost absent throughout
- Water flows much reduced in large areas
- Water flow directions no longer parallel to landscape directionality
- Freshwater flows to Florida Bay much reduced

Aspects Same or Similar (in remnant Everglades)

- Peat still present
- Slope still present
- Most plant species still present
- Aspects of patterning (both vert. and horiz.) still present
- An original "watershed" or "flowpath" still largely present
- Higher-lying landscapes still present (marl prairies)

Conclusions

- Seems feasible to restore to pre-drainage hydrology
- Would likely yield more sustainable landscape
- Would probably address a number of current problems

Challenges

- Ecological implies big change from current
- Water Quality
- Water Quantity
- Different thinking / paradigm shift??

