Temporal \& spatial dynamics in the fish community of marsh-mangrove ecotonal habitats

Jennifer Rehage ${ }^{1}$ \& Bill Loftus ${ }^{2}$
${ }^{1}$ Oceanographic Center
Nova Southeastern University Dania, FL
${ }^{2}$ U.S. Geological Survey
Everglades National Park Field Station Homestead, FL

Trophic Hypotheses for Everglades Restoration

- Wading bird foraging \& breeding success is strongly affected by:
- Prey population sizes
- Wet season water levels
- Time since last dry-down
- Salinity
- Seasonal concentrations of prey
- Microtopography
- Recession pattern

In a seasonally flooded wetland...

- Inundation fluctuates seasonally
- Thus, amount \& quality of fish habitat also fluctuate
- Recurrent dry-down structures fish community
- Limits the abundance (predators) (Loftus \& Eklund 1994, Ruetz et al. 2005, Trexler et al. 2005)
- Fish respond to dry down by dispersing into deep-water habitats
(Nelson \& Loftus 1996, Kobza et al. 2004, Rehage \& Trexler 2006, Rehage \& Loftus 2007)

Marsh-mangrove ecotone

- Freshwater marshes transition into an extensive region of tidal mangrove forest
- Historically, important wading bird habitat
- Coastal nesting may be an important indicator of restoration
- Mangrove-lined creeks link marshes to coastal habitats

Ecotonal creeks as fish habitat

- Reductions in freshwater inflow have resulted in:
- Higher salinity
- Higher frequency of marsh drying
- Changes in habitat structure

How do these factors affect the use of creeks by fishes, particularly by wetland species?

Sampling effort

Focused on creek channels at ecotone, targeting both large fishes \& prey species:

- 4 years of data
- 2 drainages, 15 sites
- 10 in Rookery Branch
- 5 in North \& Roberts Rivers
- Sample 3 times per year
- Nov-Dec = wet season
- Feb-Mar = transition
- April-May = dry season

Large-fish sampling

- Gather data on game \& non-native species
- Limited understanding of what drives their distribution \& abundance
- Multiple bouts per creek with standardized power
- 37 species, 8,770 fish ($\mathrm{n}=474$ samples)

Small-fish sampling

- Deployed overnight in pairs attached to mangrove proproots (1 in. opening)
- Multiple pairs per creek ($\mathrm{n}=740$ samples)

Multiple pairs per creek (n

- 32 species, 9,246 fish

Specific questions

1. What is the pattern of seasonal variation in fish catches with relation to the timing of marsh drying?
2. How do catches vary across years with varying dry-down severity?
3. What is the contribution of the freshwater taxa?
4. How does variation in catches relate to variation in hydrological \& physicochemical parameters?

Hydrological conditions

- Marshes dry all years but there is variation

2005 - moderately dry + no reversals 2006 - wet + steady recession
2007 - dry + reversal
2008 - very dry + reversal

- Salinities reach 2-5 PSU by AprilMay
- Increase occurs earlier in 2008
- Low in 2007 = sampling is post-reversal

Seasonal \& yearly variation in catches

Rookery Branch

Electrofishing

- For larger taxa, catches peak earlier in dry years
- For the prey, similar pattern in dry yrs without reversals
- Little variation in wet year (2006)

Yr, p = 0.0001
Season, $p=0.0001$
Yr x season, $p=0.0001$

Peaks in CPUE reflect influx of freshwater taxa

- Influx occurs early in drier years for gar
- Centrarchids peak early \& drop in dry years
- Among smaller taxa, some sp may be creek residents, while others are only found in high numbers in dry years

Contribution by freshwater species is large

Both prey \& predators move into creeks

 prey and predator CPUE are positively related only in the dry season

- This co-occurrence in time \& space could result in 'loss' of marsh prey biomass in creeks

Relating CPUE to environmental parameters

- Model selection techniques to examine explanatory power of physicochemical \& hydrological variables (Burnham and Anderson 2002) :
- Model fit was improved with different variables:

ELECTROFISHING CPUE TRAP CPUE

Salinity
Dissolved oxygen
Salinity

Creek water depth
Marsh water depth (SH1, averaged 15 days prior to sampling)

- Other variables examined included: temperature, days since last dry down (in marshes upstream)

Large fish CPUE as a function of environmental variables

- Large fish catches are negatively related to salinity
- And, positively related to DO levels

Small-fish CPUE \& environmental variables

- CPUE may be inversely related to salinity, creek depth (highest catches are at shallowest sites = closest to marsh), \& marsh water depth

Summary

- Freshwater taxa are an important component of the ecotonal fish community.
- Creeks appear to be functioning as dry-down habitat for certain freshwater taxa:
- Spatial extent of this effect is not known
- How good of a refuge?
- Prey move into creeks with predators \& encounter estuarine predators
- Salinity affects the spatial and temporal extent of the ecotone that is suitable to marsh fishes.
- Timing \& severity of marsh drying affects timing of influxes of marsh fishes into creeks and thus seasonal patterns of abundance.

Implications for restoration

Working Model

- Frequent dry down pushes fishes into creeks:
- They spend longer part of the dry season in this habitat
- Fish biomass may be consumed by piscine predators (instead of avian predators)
- With increases in freshwater inflow \& prolonged pooling of water at ecotone, a shift in energy flow back to wading birds may be expected.

Many thanks to...

Assistance: J. Kline, J. Lorenz, M. Robinson, J. Trexler, K. Dunlop, L. McCarthy, Z. Fratto, B. Shamblin, B. Dunker, K. Dunker, P. Rehage

Hydrological data: T. Smith \& G. Anderson, SFNRC DataForEVER

Funding: E. Kurzbach, J. Newman, V. Engel, P. Telis

US Army Corps of Engineers

