EVERGLADES NITROGEN: Patterns, Processes, and Implications for Restoration

Patrick W. Inglett

University of Florida, Department of Soil and Water Science

Victor H. Rivera-Monroy

Louisiana State University, Wetland Biogeochemistry Institute

Jeffrey R. Wozniak Texas A&M University, Dept. of Wildlife & Fisheries Sciences

David T. Rudnick South Florida Water Management District, Everglades Division

N Importance

 Limiting nutrient in Florida Bay, Coastal Systems

 algal blooms/loss of seagrasses

N Importance

- Limit to productivity in P-loaded areas
- Limit to P retention in treatment areas
- Greenhouse gas emissions

Processes

- Deposition/Inputs
- N₂ Fixation
- NH₃ Volatilization
- Nitrification/Denitrification
- Mineralization
- Photolysis

Major Components

- Water
- Soils

- Biota
 - Macro-, Microphytes
 - Consumers (Food Chain)

Systems

- Major source of N
 - fertilizer
 - peat oxidation
 - Okeechobee
- 1-5 Metric Tons yr⁻¹

Systems

Periphyton

•Assemblages of prokaryotic and eukaryotic algae.

•Occur at interfaces of water-solid substrates and the water surface.

Periphyton Mat N₂ Fixation

~10g N m⁻² yr⁻¹ contribution to an interior WCA-2A slough

Inglett et al., 2004

Uptake of Water column N

Slough N Tracing/Fate

Inglett et al., *in prep*

N-Cycling in Southern Marshes

Wozniak et al., *in prep*

N-Cycling in Southern Marshes

Wozniak et al. In prep

Systems

The Mangrove Ecotone Region

An extensive region of the Everglades limited by phosphorus availability due to lack of terrigenous sediment input and reduced freshwater flow

ANPP is 6 times higher in the western than in the eastern region

Mangroves: Major TN Surface Water inputs-(metric tons yr⁻¹)

- Most N studies perfomed in Shark River and Taylor River Sloughs
- Larger N loading (surface water) in Shark River Slough than in Taylor
- Seasonal patterns, controlled by hydrology

Rudnick et al 1999; Sutula et al 2001, 2003

Estimated N budgets (mg N m⁻² yr⁻¹)

 Currently more detailed information on N budgets in Taylor River than in Shark River

 Net import of N in Taylor Slough

Rudnick et al 1999; Sutula et al 2001, 2003

Mangroves: Denitrification rates (mg N m⁻² yr⁻¹)

• Still uncertainty in budget (lack of in situ denitrification and N fixation studies)

 Denitrification rates are similar in Shark and Taylor Rivers

• Denitrification rates in Taylor River are [NO₃] limited as result of low *in situ* concentrations

 Nitrification is limited by [PO₄] availability in soil pore waters

Rivera-Monroy, in prep

Effects of Phosphorus Dosing

- Increase N mineralization (White and Reddy, 2000) N flux (e.g., Newman et al., 2001)
- Increased NH₄⁺ increases potential nitrification (White and Reddy, 2003)
- Increases N demand
- Increases N₂ fixation (Inglett et al., 2008)

P Influence on Soil N Dynamics

Restoration?

Restoration Goals

- Minimize EAA soil oxidation
- Reduce P export to WCA's
- Level out the hydrology/hydroperiod
- Increase freshwater flow to FL Bay/Gulf of Mexico

Process-level Understanding

- Deposition/Inputs:
 - Quantifyable (managed/atmospheric)
- N₂ Fixation:
 - Significant process
 - Spatially variable
 - P-regulated, Hydrology?
- Mineralization
 - Key factor in N flux transport
 - P role established, but ecosystem linkages not investigated

Process-level Understanding

Nitrification/Denitrification:

 Important for mass balance/budget
 Largely undocumented (*in situ* rates)
 Effect of P as yet undetermined
 Role in periphyton mats?

Process-level Understanding

 NH₃ Volatilization: - Conditions may exist...unverified Photolysis Important determinant of N availability/fate Poorly studied except in marine systems New processes – Anammox - Nitrate reduction coupled to S/CH₄ oxidation

Thank you