The Contrasting Mineral Chemistry of the Predrainage and Managed Everglades:

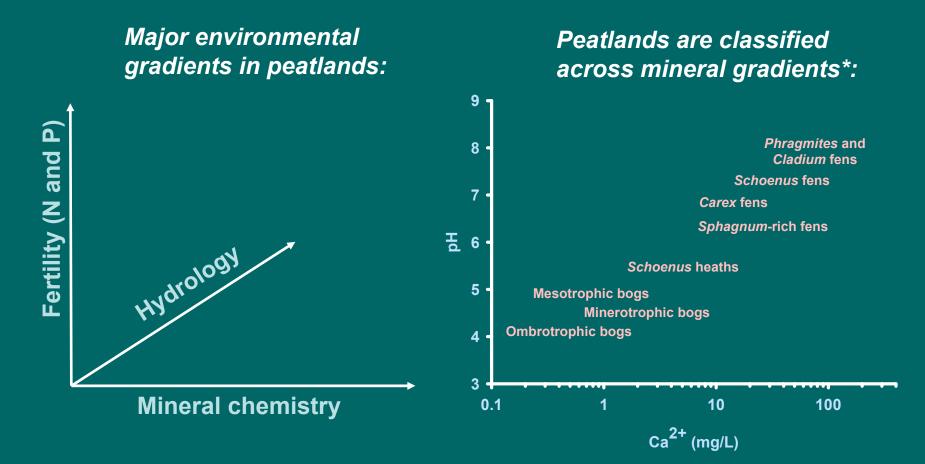
Hydrologic Basis and Biogeochemical Significance

Paul V. McCormick¹, Judson W. Harvey²,
 William H. Orem², Susan Newman¹,
 Scot E. Hagerthy¹, and Joel C. Trexler³

¹South Florida Water Management District, West Palm Beach, FL ²U.S. Geological Survey, Reston, VA ³Florida International University, Miami, FL

"The predrainage Everglades was a rainfall-driven ecosystem"

- Rainfall-driven peatlands are characterized by:
 - low inputs of limiting nutrients such as phosphorus (P)
 - mineral depleted (soft-water) conditions
 - Acidic-neutral pH
- The P-limited condition of the predrainage Everglades is widely accepted
- The widely held belief that the Everglades was always a hardwater, high pH ecosystem is not supported by available data
 - Historic water sources
 - Peat profiles
 - Paleoecological studies

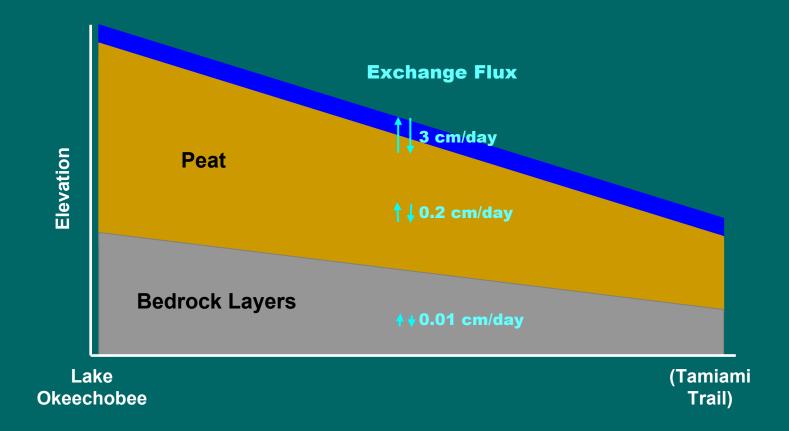

What do we mean by mineral chemistry?

- 7 major ions:
 - <u>Cations</u>: Ca²⁺, Mg²⁺, Na⁺, K⁺
 - <u>Anions</u>: CI^{-} , HCO_3^{-}/CO_3^{2-} , SO_4^{2-}
- Bedrock and upland sources
- Differing chemical properties
- Specific conductance (µS/cm) as a proxy

Correlations between specific conductance and major ions across the Everglades (17 long-term monitoring stations):

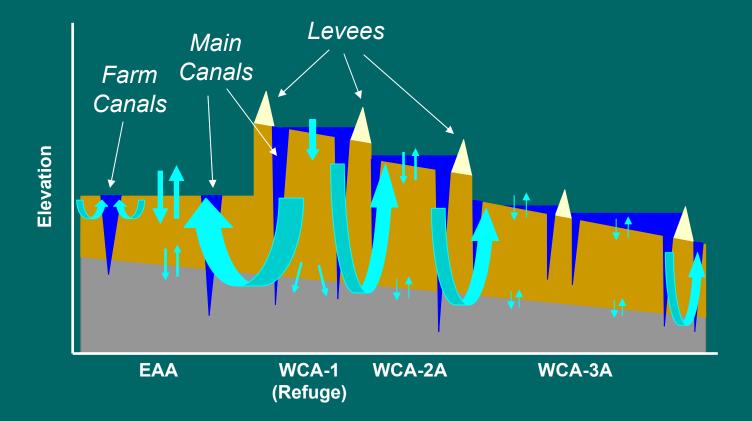
lon	r
Alkalinity	0.940
Chloride	0.964
Calcium	0.867
Magnesium	0.967
Potassium	0.979
Sodium	0.938
Sulfate	0.932

Mineral chemistry has a major influence on peatland ecology


*Adapted from: Wheeler, B.D., & M.C.F. Proctor, 2000. Ecological gradients, subdivisions, and terminology of north-west European mires. Journal of Ecology 88:187-203.

Were the northern and central Everglades always minerotrophic peatlands?

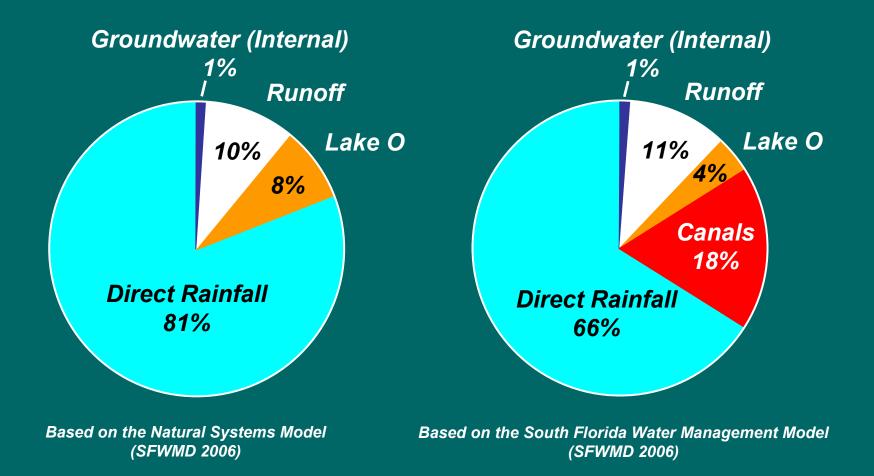
Reasoning to support this view:


- The Everglades is underlain by limestone bedrock
- Many parts of the Everglades are mineral-rich today
- Spatial differences in surface-water chemistry correspond to differences in underlying bedrock

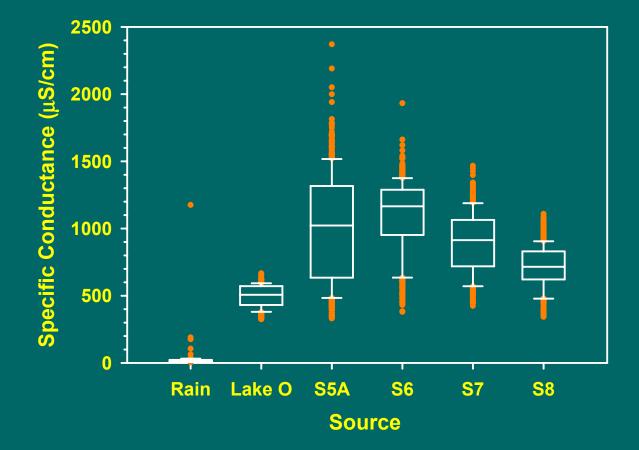
Ground water-surface water interactions were limited in the predrainage system

*Based on: Harvey and McCormick. In press. Hydrogeology Journal.

Canal construction, drainage, and subsidence have increased vertical water fluxes in the managed system



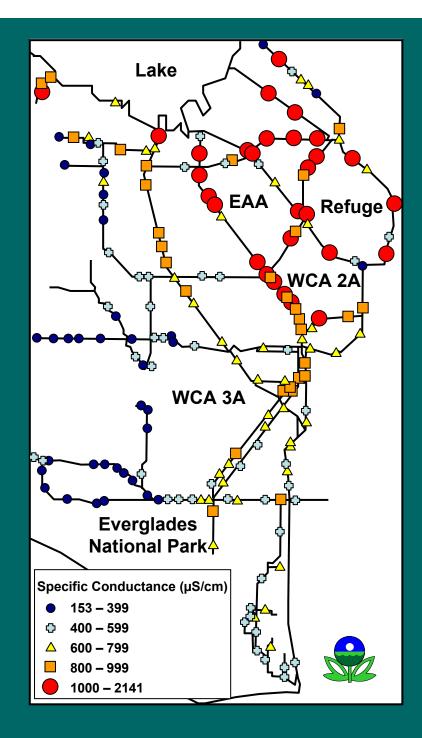
*Based on: Harvey, Krupa, and Krest. 2004. Groundwater. Harvey and McCormick. In press. Hydrogeology Journal.


Water Sources to the Predrainage and Managed Everglades

Predrainage

<u>Managed</u>

Canal waters are highly mineralized compared to historical water sources



Source: SFWMD

Patterns of canal conductivity identify the EAA as a major mineral source

Redrawn with permission from:

Stober, J., D. Scheidt, R. Jones, K. Thornton, R. Ambrose & D. France, 1998. South Florida Ecosystem Assessment: Monitoring for Adaptive Management: Implications for Ecosystem Restoration: Final Technical Report - Phase I, United States Environmental Protection Agency EPA-904-R-98-002.

Canal-water intrusion creates differences in mineral chemistry across the Everglades interior

	Canal	WCA 2A	Refuge
Parameter	Discharges	Interior	Interior
ТР	106 (S5A)	8	6
(µg/L)	30 (STA1W)		
Spec. Cond. (µS/cm)	1096	1163	105
pH units	7.5	7.5	6.2

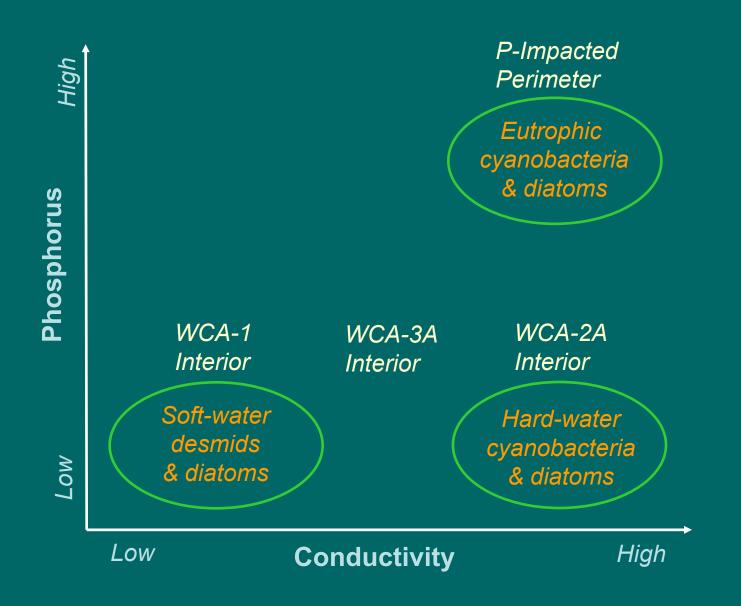
Source: SFWMD

Several factors have contributed to changes in Everglades mineral chemistry

Predrainage

- Little groundwater influence
- Peat accretion (storage)
- No anthropogenic additions
- Lower atmospheric inputs?

<u>Managed</u>


- Considerable
 groundwater influence
- Peat oxidation (release)
- Import to the watershed (fertilizers, etc.)
- Higher atmospheric inputs?

Biogeochemical Responses to Changing Mineral Chemistry

The international literature reports a broad range of responses:

- Nutrient cycles (Newman Tue 4:40 p.m.)
- Contaminant cycles (Orem Mon 2:20 p.m.)
- **Periphyton communities** (Gaiser Mon 11:50 a.m.)
- **Plant communities** (*McCormick Poster Session 2*)
- Landscape patterns (McCormick Poster Session 2)
- Faunal communities (*Trexler* @ *meeting*)

Periphyton Communities

Plant Communities

•Loss of sensitive soft-water taxa:

Xyris

Nymphoides

Eriocaulon

Landscape Patterns

•Coexistence of sawgrass and slough habitats:

Growth of sawgrass seedlings in slough soils that are (right to left):

- 1) Unenriched (Control);
- 2) Enriched with P;
- 3) Enriched with P and minerals.

Conclusions

- Mineral concentrations have increased across large areas of the Everglades
- These increases are a result of regional changes in hydrology and land use
- These increases have biogeochemical consequences
- Additional research and modeling needed to determine relevance to ecosystem restoration

Acknowledgments

- U.S. Geological Survey Everglades Priority Ecosystem Studies Program
- A.R.M. Loxahatchee National Wildlife Refuge
- South Florida Water Management District