Phosphorus availability and salinity control productivity and demography of *Thalassia testudinum* in Florida Bay.

Darrell A Herbert and James W Fourgurean

Florida International University Southeast Environmental Research Center and Biology Department

GEER 2008, July 27 – August 1, Naples FL

Florida Coastal Everglades LTER

FCE LTER Marine Sites

FCE LTER Marine Sites

P decreases SW to NE Salinity variability increases

Fourqurean & Zieman. 2002. Biogeochemistry

FCE LTER Marine Sites

Fourqurean & Zieman. 2002. Biogeochemistry

Elevated P from groundwater Highly variable salinity

Price et al. 2006. Hydrobiologia

Objectives

Analyze long-term data spanning a seven year collection of biomass, density, and productivity measurements of *T. testudinum*.

Determine how aboveground and belowground components of biomass and growth change as a function of nutrients and salinity.

Examine relationships between aboveground and belowground biomass, productivity, and ramet demography.

Methods

Data Collections

Collected 6x annually

- Ramet density
- Aboveground biomass
- Leaf initiation & growth
- Leaf N and P content

Long-term salinity archives

- Water Quality Monitoring Network, SERC, FIU
- Everglades National Park

Single collection

- Ramet, rhizome, & root mass
- Ramet age distributions

Methods

Thalassia leaf productivity

Thalassia belowground productivity

Methods

Determination of population structure

Belowground productivity estimated from recruitment rate, assuming equilibrium population structure.

 \overline{Y} = mean of the time series α = amplitude of the sine wave ϕ = phase angle DOY = day of year in radians

 \overline{Y} ± 95% confidence interval and α describe site means and seasonality

Thalassia characteristics by site

	Foliar P (%)	Foliar N (%)	Ramet density (m ⁻²)	Dry mass (mg ramet ⁻¹)				Total	P _s	
Site				Leaves	Ramet	Rhizome	Root	$\frac{\text{mass}}{(\text{g m}^{-2})}$	biomass ratio	
Sprigger Bank	0.134	2.05	221	213	71.6	355	36.7	148	0.447	
Bob Allen Keys	0.061	2.53	295	54.1	62.1	227	18.4	104	0.167	
Duck Key	0.050	2.31	612	30.8	38.1	167	35.4	165	0.126	
Little Madeira	0.078	2.29	525	55.6	28.7	153	18.2	134	0.282	
Trout Cove	0.085	2.46	470	59.9	79.3	153	41.8	158	0.227	

LER and seasonal amplitude are correlated with foliar P

Standing Crop and Aboveground Production vs. P

Leaf standing crop and productivity are correlated with foliar P

Highly variable salinity reduced the predictability of RGR

Residual Analysis of Predicted vs. Observed Relative Growth Rate

RGR was depressed at low and high salinities

Seasonal Amplitude in Aboveground NPP vs. Salinity Variability

Seasonal amplitude of ANPP increased with salinity variability

Population Structure, Mortality, and Recruitment

Low rates of mortality and recruitment where P availability is low

Aboveground and Belowground Productivity

Belowground productivity is 23% - 37% of aboveground productivity

Total Production vs. P

Above vs belowground mass allocation correlated with P Belowground NPP correlated with leaf standing crop but not P Belowground RGR correlated with leaf standing crop and P Indices of total productivity correlated with P

Current Recruitment Rates and Long-Term Mortality Rates

Recruitment strongly correlated and mortality weakly correlated with leaf mass, NPP, and P

Conclusions

P availability controls on *Thalassia testudinum* include:

- Biomass allocation to photosynthetic structures
- Indices of NPP
 - Leaf emergence rates
 - ANPP and aRGR, and to a lesser extent BNPP and bRGR
- Recruitment and mortality of ramets

NPP and mortality are strongly tied to the standing crop of leaves

Belowground NPP allocation is approximately a third of total NPP

Salinity extremes depress site-specific RGR, and the frequency of extreme salinity events appears to be a factor controlling NPP

Acknowledgements

Much of the field data was collected by Rebecca Bernard, Dorothy Byron, Virginia Cornett, Kevin Cunniff and Bryan Dewsbury.

> Laboratory analyses overseen by Susie Escorcia and Pamela Parker

Funding provided by The National Science Foundation Florida Coastal Everglades LTER Everglades National Park Florida Sea Grant