

Wintering Bird Area Occupancy in a Mosaic of Harvested and Unharvested Sugarcane Fields

Elise Pearlstine, Mark Miller, Robert Dorazio and Frank Mazzotti

Everglades Agricultural Area

Sugarcane Fields

Edges

What is the effect of landscape structural change on avian presence and abundance?

Methods

- Winter/harvest surveys
- 245 sites transects, points were 500 meters apart, centered on small unpaved roads along field edges, 6-19 points each
- 50 meter circle
- Visited 5 times each
- Single observer
- Pre-dawn for 3 4 hours
- By sight except for Common Yellowthroat and Red-winged Blackbirds
- Tall, medium and short cane

 FIGURIDA

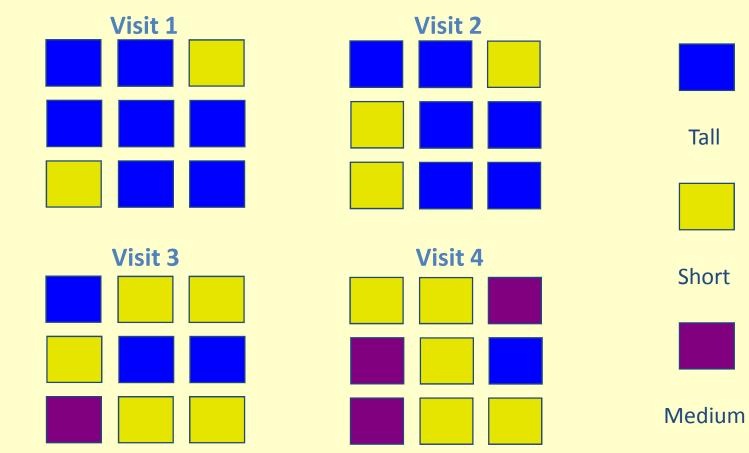
 Tall, medium and short cane

- Sugarcane classification for models
 - Tall: un-harvested, ≥ 67% within circle
 - Short: newly harvested until canopy begins to close, ≥67%
 - Intermediate: between 34 and 66% short cane
- Edge

- Short: < 30 cm

– Tall: ≥ 30 cm

Other crops rarely included beans, short corn or fallow land



Occupancy Models

Normally mean abundance, λ , is constant within a site:

$$\lambda \times p_1 \times p_2 \times p_3 \dots p_n$$

We let λ vary spatially and temporally with habitat

Occupancy Models - Detection

$$e^{(\theta_0 + \theta_{Obs} X_{Obs} + \theta_T X_T)}$$

$$\rho = \frac{1 + e^{-(\theta_0 + \theta_{Obs} X_{Obs} + \theta_T X_T)}}{1 + e^{-(\theta_0 + \theta_{Obs} X_{Obs} + \theta_T X_T)}}$$

Obs = Observer, T = Time

Likelihood – Royle 2004

$$\zeta(p, \lambda\{n_{it}\}) = \prod_{i=1}^{R} \left(\sum_{\max n_i} \left(\prod_{t=1}^{R} \text{Bin}\left(n_{it}; N_i, p\right)\right) f(N_i; \lambda)\right)$$

R = Sites

N = Maximum Abundance

T = visits

f = Poisson function of mean abundance, λ

Results Palm Warbler

Habitat	Occupancy (95% CI)	Abundance (95% CI)
TC, TE	1.00 (0.99 – 1.00)	18 (5 – 68)
TC, SE	1.00 (0.99 – 1.00)	17 (4 – 65)
IC, TE	1.00 (0.99 – 1.00)	18 (5 – 68)
IC, SE	1.00 (0.96 – 1.00)	12 (3 – 46)
SC, TE	1.00 (0.99 – 1.00)	16 (4 – 62)
SC, SE	1.00 (0.96 – 1.00)	12 (3 – 46)

Results Common Yellowthroat

Habitat	Occupancy (95% CI)	Abundance (95% CI)
TC, TE	0.99 (0.95 – 1.00)	5.3 (3.0 – 9.4)
TC, SE	0.98 (0.83 – 1.00)	3.8 (1.8 – 7.9)
IC, TE	0.97 (0.85 – 1.00)	3.4 (1.9 – 6.1)
IC, SE	0.78 (0.48 – 0.97)	1.5 (0.7 – 3.5)
SC, TE	0.81 (0.58 – 0.95)	1.6 (0.9 – 3.1)
SC, SE	0.44 (0.20 – 0.78)	0.6 (0.2 – 1.5)

Results Red-winged Blackbird

Habitat	Occupancy (95% CI)	Abundance (95% CI)
TC, TE	1.00 (1.00 – 1.00)	28 (7.2 – 106)
TC, SE	1.00 (0.98 – 1.00)	17 (4.1 – 71)
IC, TE	1.00 (1.00 – 1.00)	24 (6.1 – 94)
IC, SE	1.00 (0.98 – 1.00)	17 (4.2 – 69)
SC, TE	1.00 (0.78 – 1.00)	6 (1.5 – 23)
SC, SE	1.00 (0.97 – 1.00)	14 (3.4 – 57)

- Palm Warbler (migrant) most widely detected, best model included effect of edge on abundance but not occupancy
- Common Yellowthroat best model included cane state and edge effect on abundance
- Red-winged Blackbird best model included cane state and edge effect on abundance

Other Species

- EAA as winter habitat for songbirds 22 species of passerines detected plus Killdeer, Mourning Dove and Common Ground Dove
- Edges important habitat components
- Extension of Royle (2004) model to estimate vegetation structure effect on avian populations

ERROR: stackunderflow
OFFENDING COMMAND: ~

STACK: