Biotic Resistance in Weed Biological Control

MELISSA C. SMITH, ELLEN C. LAKE, CAREY R. MINTEER, MIN RAYAMAHJI, GREG WHEELER, PHILIP TIPPING, F. ALLEN DRAY GEER 2017, APRIL 18

Biotic Resistance

Competition

Predation

Pathogens & Parasites

Elton (1958)

Biological Control

- >50% of arthropods released for weed biological control are suppressed by native species
- Why do some biological control introductions fail??
 - Agent fails to establish at all
 - Populations establish, but target weed does not decline
 - Local failure
 - Global failure

Biotic Resistance

- ► For Biological Control?
 - ► Enemy release
 - Competitor release
 - Allee effects

Biotic Resistance

► For Biological Control?

- Enemy release
- Competitor release
- Allee effects
- Relation to a pest spp.

Biological Control Failures: Examples

Austromusotima camptozonale

- Pyralid moth introduced to control Lygodium microphyllum
- Larvae and pupae attacked by native parasitoids and predators (Boughton & Pemberton 2008)
- < 2 generations in the field

Biological Control Failures: Examples

Spodoptera pectinicornis

- Noctuid moth introduced to control Pistia stratiotes (Water lettuce)
- Larvae and pupae attacked by native birds and fire ants (Dray et al. 2001)

Biological control conflicts

Insect Biological control vs. Weed Biological control

Trichogramma exiguum

European corn borer

Biological control conflicts

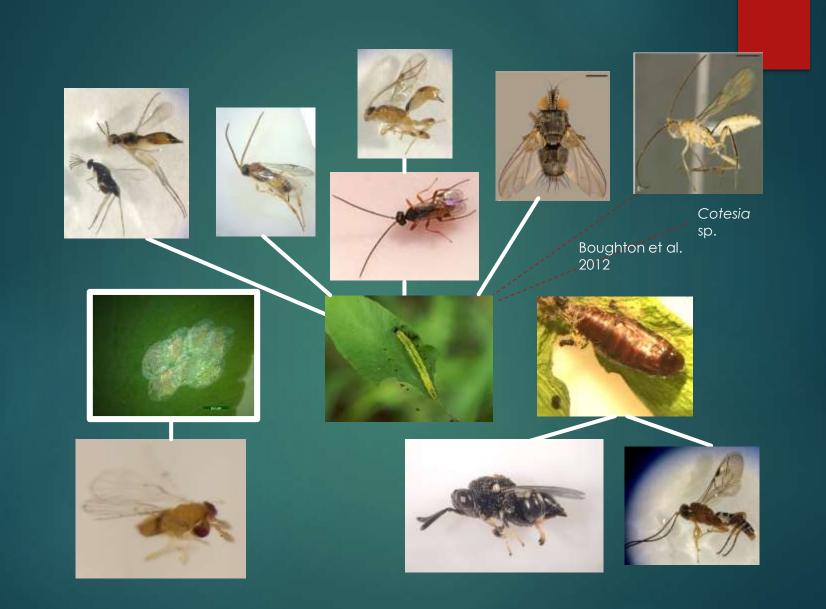
Insect Biological control vs. Weed Biological control

Trichogramma exiguum

European corn borer

Biological control conflicts

Insect Biological control vs. Weed Biological control


Trichogramma exiguum

Neomusotima conspurcatalis

What can be done?

- Susceptible biocontrol agents rapidly accumulate native parasitoids (Paynter et al. 2010)
- Biological control agents in proximity to analogs
- Example: Neomusotima conspurcatalis

Megamelus scutellaris

Kalopolynema ema

Megamelus davisi

What can be done?

- Actively search out insects without native analogs in close proximity
- Example: Oxyops vitiosa (Melaleuca quinquenervia)

What can be done?

Sometimes you don't have any other options:

- Lygodium microphyllum
- Rhodomyrtus tomentosa
- Parasitoid accumulation in the native range doesn't predict parasitoid susceptibility in the adventive range
- Parasitoid species assemblages are often poorly studied difficult to predict
- Study the native insect communities in the invaded communities
- Coordinate between insect biological control and weed biological control

Discussion and Questions?

- ► References:
- Goeden, R.D. and S.M. Louda. 1976. Biotic interference with insects imported for weed control. Ann. Rev. Entomology.
- Paynter, Q. et al. 2010. Predicting parasitoid accumulation on biological control agents of weeds. J. Appl. Ecol.
- Boughton, A.J. and R.W. Pemberton. 2008. Efforts to establish a foliage-feeding moth, Austromusotima camptozonale, against Lygodium microphyllum in Florida.... Biological Control
- ► THANK YOU:
 - Dr. Ellen Lake
 - Dr. F. Allen Dray
 - Dr. Carey Minteer