Determining the Feasibility of Biological Control of a Weed Target

Carey R. Minteer¹, Greg Wheeler², Paul Madeira², and Matt Purcell³

¹University of Florida, Fort Pierce, FL, USA ²USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL USA 3 USDA-ARS Australian Biological Control Lab, Brisbane, Australia

Invasive plants

Biological Control

Positive

- Safe (Host specific)
- Self perpetuating
- Spreads to new areas
- Environmentally friendly
- High return on investment

Negative

- High up front cost
- Slow
- Will not eradicate pest
- Doesn't always "stick"

However.....

- Not all weeds are amenable to biocontrol
- Several challenges.....
 - Closely related (or chemically similar) to
 - economically important species
 - threatened/ endangered species
 - Difficult to find host-specific agents
 - Conflicts of interest
 - Beekeepers
 - Nurseries/Horticulture
 - Culturally significant

Feasibility studies.....

- Biocontrol is expensive on the front end
 - Difficulty in finding host-specific biocontrol agents
 - Potential conflicts of interest
- Prudent to do a feasibility study before start of biocontrol program
 - Cost-effective
 - Can uncover hidden challenges before the initiation of a BC program
 - Assist in determining likelihood of success

Feasibility study

- Nature of damage (ecological/economic)
- Origin/ geographic distribution
- Taxonomy/ closely related plants (molecular/traditional)
 - Potential risks to native plants
- Secondary plant chemistry (relevance to herbivory)
- Recommended species test list
- Conflicts of interest
- Recommendations

Earleaf acacia

- Native to Northern Australia, Papua New Guinea, and Indonesia
- Introduced into US intentionally ornamental
 - Hawaii- 1920s
 - Florida- 1930s

Nature of damage (ecological/economic)

- Allelopathic
- Host for the lobate lac scale
- Brittle wood paired with weak branch crotches

 badly damaged during wind storms/hurricanes
- Allergenic (pollen)

Origin/geographic distribution

 Native to Northern Australia, Papua New Guinea, and Indonesia

Origin/geographic distribution

EDDMapS, 2016

Taxonomy

Molecular phylogeny

- extracted DNA from subfamilies Mimosoideae, Caesalpinioideae, and Papilionoideae
 - emphasis on the native Mimosoideae taxa (most closely related to earleaf acacia)
- rbcL gene
- Sequences from 335 taxa (extracted and GenBank)
- Identify potential risks to closely related native plants

Recommended species test list

- Based on molecular phylogeny,
- Threatened and endangered plants,
 Fabaceae and closely related families
- Economically important species
- Plants with similar secondary plant chemistry

Conflicts of Interest

- Used as an ornamental (not recommended)
- Medicinal (potential)
 - antifilarial (Ghosh et al. 1993), an anticestodal (Ghosh et al. 1996), and an antifungal (Mandal et al. 2005)
- <u>Supplemental</u> food source for big cypress fox squirrels (endangered)

Preliminary foreign surveys

- Leaf feeders (5)
- Stem/leaf gallers (3)
- Leaf miners (1)
- Seed feeders (2)
- Sap suckers (1)

Recommendation for earleaf acacia

- No evidence to abandon pursuing a BC program
- Potential for success in finding host specific agent
- Next steps....
 - Continue with foreign surveys
 - Begin preliminary host range testing of candidate agents (in native range)

Acknowledgements

- Zizah Blair USDA-ARS
- Zack Ramilevich USDA-ARS
- Bradley Brown CSIRO
- Jeff Makinson CSIRO
- Ryan Zonneveld -CSIRO

