Mapping Vegetation Properties and Flow Patterns in STAs using Wave Tests

Wasantha Lal, Zaki Moustafa Walter Wilcox South Florida Water Management District

sfwmd.gov

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Why is the study of vegetation resistance important?

- Timing and attenuation of flood peaks in hydrologic systems and models depends on vegetation resistance
- Operation of STAs require a knowledge of hydraulic transients in vegetated wetlands
- Designing efficient treatment wetlands is primarily a hydraulic problem because of the influence of turbulence, dead flow zones, mixing and retention.

Challenges

- There is no vegetation measurements available (diameter, spacing, density, biomass)
- Access is challenging.
- Measurements of depth, slope, and flow velocity, etc. are not easy

Progress in establishing the "Science"

- ASCE J. Hydraul.
- AGU/WRR Pub.

1111111.00.000

is part of the *Journal of Hydraulic Engineering*, © ASCE, ISSN 0733-9429.

CAGU PUBLICATIONS
Water Resources Research

RESEARCH ARTICLE
INTEGRATION
ARTICLE
ARTI

- Workshop by Prof Heidi Nepf, MIT
- Contacts with Kadlec, R. H.
- 3-4 presentations at conferences

Recent Developments

Understanding of the Mechanics has changed

bed resistance

(a) Velocity profile for Manning's equation (b) Velocity profile for flow resisted by stem drag

Figure 7.2: Vertical velocity profiles in open channels and vegetated wetlands

Parameterization is improving

The commonly used equation for depth-averaged force balance is

$$gs_f = \frac{1}{2}c_D a U^2 + \frac{\tau_0}{\rho H}$$

where

 $a = \frac{\text{frontal area}}{\text{volume}}$

and ah =frontal area index.

a used to define vegetation density

Computational Fluid Dynamics

വഗാല്..ത്രെ

Figure-2. Plan view of the mesh for the vegetation cover (VC_D) of the deep flow region and the vegetation cover (VC_s) of the shallow flow part for the IS configurations.

In the absence of data, we used wave propagation methods, monitored wave velocity and attenuation

Basic mathematical methods used for the formulation

- Adv. Fluid Mechanics Incompressible Flow, Panton
- Differential calculus Hilderbrand
- Complex variables -
- Spectral analysis –
- Linear stability theory -
- Perturbation theory Fluid mechanics, Kundu

Transport and dispersion of solutes - Fisher

Use of depth averaged flow

2.1. Depth-Averaged Flow Equations

St. Venant's equations are used to analyze the shallow water waves generated in the wetlands. The St. Venant's equations consist of a continuity equation and a momentum equation.

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0 \tag{1}$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} \right) + gh(s_f + \frac{\partial h}{\partial x} - s_0) = 0$$
(2)

where h = water depth; q = discharge per unit width; g = gravitational acceleration; $s_0 = -\frac{\partial z}{\partial x} =$ bed slope; z = bottom elevation; H = h + z = water level; $s_f =$ friction slope. Figure 1 shows a definition sketch drawn

Energy Slope S_f related to discharge $q(h, s_f)$ with a smooth function

$$\Delta q = a\Delta h + K\Delta s_f$$
$$a(h, s_f) = \frac{\partial q(h, s_f)}{\partial h}, \quad \text{and} \quad K(h, s_f) = \frac{\partial q(h, s_f)}{\partial s_f}$$

a = kinematic celerity [*Chow*, 1956]; *K* = hydraulic diffusivity, or transmissivity

Kinematic vs Porous Media Flow

Kinematic

(a) Figure showing a large change in discharge with depth. Change in discharge with slope is small.

ah_{Ks_f} Ψ_{k_1}

(b) Figure showing large change in discharge with slope. Change in discharge with depth is small.

For 2-D Wave Propagation in a Shallow Water Medium

Linearization of (3.1) leads to

$$\frac{\partial h}{\partial t} + a_x \frac{\partial h}{\partial x} + a_y \frac{\partial h}{\partial y} = K_x \frac{\partial^2 h}{\partial x^2} + K_y \frac{\partial^2 h}{\partial y^2} + 2K_{xy} \frac{\partial^2 h}{\partial x \partial y}$$
(3.5)

where

$$a_x = \frac{\partial q_x}{\partial h} = \frac{\partial T}{\partial h} s_{fx}$$
(3.6)

$$a_y = \frac{\partial q_y}{\partial h} = \frac{\partial T}{\partial h} s_{fy} \tag{3.7}$$

$$K_{xx} = \frac{\partial q_x}{\partial s_{fx}} = \frac{\partial T}{\partial s_{fn}} \frac{s_{fx}^2}{s_{fn}} + T$$
(3.8)

$$K_{yy} = \frac{\partial q_y}{\partial s_{fy}} = \frac{\partial T}{\partial s_{fn}} \frac{s_{fy}^2}{s_{fn}} + T$$
(3.9)

$$K_{xy} = \frac{\partial q_x}{\partial s_{fy}} = \frac{\partial T}{\partial s_{fn}} \frac{s_{fy} s_{fx}}{s_{fn}}$$
(3.10)

Choose Power law equations – For Easy Mathematics

• Discharge is a function of water depth and slope:

$$q = f(depth, slope) = f(d, s)$$

Smooth function

$$q = rac{1}{n_b} h^{1+\gamma} s^lpha$$

Chosen Template

Three physical parameters to match three physical characterizations of hydraulics

- γ Gamma gives depth variability
- α •Alpha gives level of turbulence
- *n_b* Manning's constant characterizes the resistance

$$q = \frac{1}{n_b} h^{1+\gamma} |s_f|^{\alpha} \operatorname{sgn}(s_f)$$

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Field Test

STA3/4 Cell 2A Wave 1 Discharge 750 cfs, Period 64 hour

STA3/4 Cell 2A

Waves generated using canal flow

Figure 2.1: Location of the data loggers and the IDs.

Array of data loggers

Figure 2.2: Locations of data loggers and the serial numbers. The loggers 0499, 3962 and 2835 are south of 0508 along levee

Decay rates and wave numbers, 750 cfs

Fig. 6. Decay coefficients k_1 for STA 3/4 Cell 2A wave test with $Q = 21.2 \text{ m}^2/\text{s}$ as vectors and contours

Fig. 7. Wave numbers k_2 for STA-3/4 Cell 2A wave test with $Q = 121.2 \text{ m}^2/\text{s}$ as vectors and contours

Transmissivity

Fig. 9. Contours of transmissivity *K* in (m^2/s) for Cell 2A wave test with $Q = 21.2 \text{ m}^2/\text{s}$

Contours of $1 + \gamma$

Fig. 12. Contours of $1 + \gamma$ for Cell 2A wave test with $Q = 21.2 \text{ m}^2/\text{s}$; values much larger than 1 indicate possible short-circuiting

sound. men

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

 $\Psi = \frac{\text{Discharge through the kinematic mechanism}}{\text{Discharge through the diffusion mechanism}}$

Fig. 14. Contours of Ψ for Cell 2A wave test with $Q = 21.2 \text{ m}^2/\text{s}$

Function q(h,s_f) on log-log axes

Figure 7. Contours of average discharge per unit width q (m²/s) obtained using power law equations. The plots are made on log-log axes. 23

K, transmissivity regimes

- K < 20 m²/s dense cattail excellent
- 20 < K < 60 m²/s cattail with open spaces
- 60 < K m²/s watch for short circuiting (k > 100 m/
- 1000 < K shallow overland flow</p>
- 4000 < K deep hole

• 0.001-0.01 m/s hyd cond - sand

Velocity nonuniformity $(1+\gamma)$

- • $(1+\gamma) = 1$ uniformly distributed over depth
- Between 1 and 3 normal
- Over 3 Velocity non-uniformity
- 1.67 Overland flow

Summary

- Maps for wave decay, wave speed, and resistance.
- In-situ bulk resistance functions, were graphical plots of q(slope, depth), and power-law equations.
- Dimensionless numbers to detect kinematic and diffusive flow conditions or laminar/turbulent conditions in STAs.