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Why is the study of vegetation resistance
Important?

e Timing and attenuation of flood peaks in
hydrologic systems and models depends on
vegetation resistance

e Operation of STAs require a knowledge of
nydraulic transients in vegetated wetlands

¢ Designing efficient treatment wetlands is
orimarily a hydraulic problem because of the
Influence of turbulence, dead flow zones,
mixing and retention.
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Challenges

= There iIs no vegetation measurements available
(diameter, spacing, density, biomass)

= Access Is challenging.

= Measurements of depth, slope, and flow velocity,
etc. are not easy




Progress in establishing the “Science”
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= Workshop by Prof Heidi Nepf, MIT
= Contacts with Kadlec, R. H.

= 3-4 presentations at conferences
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Understanding of the Mechanics has
changed

stem resistance
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(b) Velocity profile for

flow resisted by stem drag

(a) Velocity profile for
Manning’s equation
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Vertical velocity profiles in open channels and vegetated wetlands
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Parameterization is improving

The commonly used equation for depth-averaged force balance is

g - all? 4 il
gsf = jg¢pav T
gsf = 5 o
where .
frontal area
a =
volume
and ah = frontal area mmdex.
- :h a used to define vegetation density
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- Computational Fluid Dynamics
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Figure-2. Plan view of the mesh for the vegetation cover (VCp) of the deep flow region and the vegetation
cover (VCs) of the shallow flow part for the IS configurations.
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In the albsence of data,

we used wave propagation methods,
monitored wave velocity and attenuation
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Basic mathematical methods used for the
formulation

= Adv. Fluid MechaniCS — ncompressisi Fow, pantor
= Differential calculus - siesran

= Complex variables -

= Spectral analysis —

= Linear stabllity theory -

u Perturbatlon theory — Fluid mechanics, Kundu
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Use of depth averaged flow

2.1. Depth-Averaged Flow Equations
St. Venant's equations are used to analyze the shallow water waves generated in the wetlands. The St. Ven-
ant’s equations consist of a continuity equation and a momentum equation.

h 0
—+-1=0 M
Jat  ox
Jqg O [(q° ~Oh
— +— [ — ) +gh(sr+ ——50)=0 2
ot ()x(h> gSIT ox %) -
where h = water depth; g = discharge per unit width; g = gravitational acceleration; so=— %2 = bed slope;

z = bottom elevation; H = h + z = water level; s, = friction slope. Figure 1 shows a definition sketch drawn
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Energy Slope 5f related to discharge qg(h,sr)
with a smooth runction

Ag=aAh+KAss

aq<h7 Sf)
oh

aQ(h, Sf)

h y—
a( 75f> an

and K(h,sf)=

a = kinematic celerity [Chow, 1956];

:K: hydraulic diffusivity, or transmissivity
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Flow
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<inematic vs Porous iedia
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(a) Figure showing a large change in discharge with depth.
Change n discharge with slope 1s small.
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(b) Figure showing large change in discharge with slope.
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For 2-D Wave Propagation in a Shallow

Water Medium

Linearization of (3.1) leads to

oh oh oh _g2n 9*h Lk J? /l
+ay— +ay— = '
ot dx  dy " ox2 a\-
where
dqr a/
i ==
“=n T o
()q] (7/
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YT oh ()/l /.
) 1 3T .\.2‘\'
l'\"\..\. — % — —( J: +T
().\'_/ X dS/ nSfn
—) Vv _)7 ‘\.2.\'
= 2 T Sy
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a.\'_ fy a\ fn Stn

(3.9)

(3.10)
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Choose Power law equations —
For-Easy -Mathematics

* Discharge is a function of water depth and slope:

g = f(depth, slope) = f(d. s) Smooth function

g= %h,l*'f‘: e Chosen Template
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Three physical parameters to match
three physical characterizations of
hydraulics

7 =Gamma — gives depth variability
o "Alpha — gives level of turbulence

ny, *Manning’s constant characterizes the
resistance

1
q= —
Ty

Tl

s¢|“sgn(sy)

16



SOUTH FLORIDA WATER MANAGEMENT DISTRICT

STA3/4 Cell 2A Wave 1
ﬁ%h@l@@ 730 cfs,
Period 64 hour
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~ STA3/4 Cell 2A

Waves generated using canal flow Array of data loggers
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Figure 2.2: Locations of data loggers and the senal numbers. The loggers 0499, 3962 and 2835
are south of 0508 along levee
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;E:___EDecay rates and wave numbers, 750 cfs
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"‘ Fig. 6. Decay coefficients k, for STA 3/4 Cell 2A wave test with Q = |Fig. 7. Wave numbers k, for STA-3/4 Cell 2A wave test with Q
21.2 m*/s as vectors and contours 121.2 m* /s as vectors and contours
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~_Transmissivity
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Fig. 9. Contours of transmissivity K in (m?/s) for Cell 2A wave test 20

with O = 21.2 m2/s
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Contours of 1 + 7
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Fig. 12. Contours of 1 + ~ for Cell 2A wave test with Q = 21.2 m*/s:
values much larger than | indicate possible short-circuiting
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v — Discharge through the kinematic mechanism ¥ a(h)h
Discharge through the diffusion mechanism K(h)sys
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Function q(h,s_f) on log-log axes
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Figure 7. Contours of average discharge per unit width g (m”/s) obtained using power law equations. The plots are made on log-log axes. 23



K, transmissivity regimes

» K <20 m"2/s — dense cattail — excellent
» 20 < K <60 m"2/s — cattail with open spaces

* 60 < K m”2/s —watch for short circuiting (k >
100 m/

= 1000 < K — shallow overland flow
= 4000 < K — deep hole

\bf’“ ) mgl m/s hyd cond - sand 24
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Velocity nonuniformity ('] ‘|'V)

(1+y) =1 uniformly distributed over depth
Between 1and 3 - normal

Over 3 — Velocity non-uniformity

1.67 — Overland flow
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Summary

= Maps for wave decay, wave speed, and
resistance.

* In-situ bulk resistance functions, were graphical
plots of g(slope, depth), and power-law
equations.

= Dimensionless numbers to detect kinematic and
diffusive flow conditions or laminar/turbulent
conditions in STASs.
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