OPTIMAL CONTROL OF AN INVASIVE USING REACTION DIFFUSION MODEL AND LINEAR PROGRAMMING

Mathieu Bonneau¹, Fred A. Johnson², Brian J. Smith³, Christina M. Romagosa¹, Julien Martin², and Frank J. Mazzotti³.

¹ Department of Wildlife Ecology and Conservation. **University of Florida**. Gainesville, Florida.

² Wetland and Aquatic Research Center.U.S. Geological Survey.Gainesville, Florida.

³Research and Education Center **University of Florida**. Ft Lauderdale, Florida.

Problem

- Where and how much to allocate control effort?
- In an ideal world:
 - **Survey**: to know where is the species.
 - **Experiment**: to understand the potential harms and the population's dynamic.
 - **Decide**: where and how much to control.

Problem

• Where and how much to allocate control effort?

Suitability Index Species Distribution Model Mark Recapture Occupancy Model Individual Based Model

- In an ideal world:
 - **Survey**: to know where is the species.
 - **Experiment**: to understand the potential harms and the population's dynamic.
 - **Decide**: where and how much to control.

Reaction-Diffusion (RD) Model

General Pattern

+

• Low number of parameters

- General Pattern
- Low number of parameters

HYPOTHESIS

- Point of first introduction.
- Population growth $\mathbf{\epsilon}$ and diffusion \mathbf{D} .
- Smooth diffusion:
 - 98% of the population in the circle of radius $2\sqrt{4Dt}$

RD model for Tegus

• Growth rate ϵ from expert elicitation

Distribution of simulated growth rates based on a 3-point elicitation from 10 equally weighted experts.

RD model for Tegus

Diffusion coefficient from EDDMaps

- EDDMaps presence only data, accessed in 2015.
- Estimation of the diffusion coefficient based on the cumulative occupied area.
- Not all the area is sampled equally.

Large Uncertainty

Uncertainty: 25 possible population's dynamic model

• Possible associated rates of spread:

Predictions: Worst Case

Predictions: Envelope

Optimization

• Where to allocate a fixed number of traps in order to remove as much tegu as possible?

Nb of traps per cell

➢ Go where it is most likely to find the highest density

- Current cpue = 0,035 (8,33 catch per season) and 300 traps.
- 5 traps maximal per cell (500m by 500m).
- Control starts in 2016
- No traps in Ag and urban area

Control Strategy (number of traps)

- cpue = 5 * 0,035 (41,6 catch per season) and 300 traps.
- 5 traps maximal per cell (500m by 500m).
- Control starts in 2016
- No traps in Ag and urban area

Predictions (number of tegus)

Control Strategy (number of traps)

cpue increases

- cpue = 5 * 0,035 (41,6 catch per season) and 500 traps.
- 5 traps maximal per cell (500m by 500m).
- Control starts in 2016
- No traps in Ag and urban area

Predictions (number of tegus)

Control Strategy (number of traps)

cpue increases

Number of traps increases

- cpue = 5 * 0,035 (41,6 catch per season) and 800 traps.
- 5 traps maximal per cell (500m by 500m).
- Control starts in 2016
- No traps in Ag and urban area

Predictions (number of tegus)

Control Strategy (number of traps)

cpue increases

Number of traps increases

No traps in Ag and urban area

Traps everywhere

Conclusion

- An optimization framework to optimize allocation of control effort under constraints
 - Budget / Containment / Area prioritization

- Even if density can decrease punctually, if there is several satellite populations, they may explode later and the situation will become out of control.
- Toward a dynamic optimization framework to increase efficacy.

Acknowledgment

- USGS Invasive Species Program.
- Greater Everglades Priority Ecosystem Science.
- University of Florida
 - IFAS and Department of Wildlife Ecology and Conservation.