

Carbon cycle science in the Florida Coastal Everglades: Research to inform landscape management

Tiffany G. Troxler, Evelyn E. Gaiser, Jordan N. Barr, Josh Breithaupt, Sean P. Charles, Carlos Coronado, Stephen Davis, Jose Fuentes, Daniel Gann,
Stephen Kelly, John S. Kominoski, Christopher J. Madden, Sparkle Malone,
Viviana Mazzei, Jennifer Richards, Fred H. Sklar, Shelby Servais, Joseph
Donny Smoak, Joseph Stachelek, Greg Starr, and Benjamin J. Wilson

Florida Coastal Everglades carbon cycle research

Image on left: Flow is restored beneath the 1-mile bridge at the Tamiami Trail along the northeast boundary of the Park, May 2013. Project cost: \$93 million USD. Everglades science helped inform the cost benefits of this project and a proposed additional 2.6 mile bridge.

FCE LTER

Historic Flow

Current Flow

Future Flow

Arrows show dry season seawater INFLUX into the Everglades creeks and groundwater (not to scale)

Carbon dynamics determine the persistence of coastal Everglades wetlands 2 Foot SLR 2 Foot SLR + Flow Restoration No Flow Restoration

USACE

Florida Coastal Everglades – integrated approaches to understanding landscape change

- Net ecosystem exchange
- Primary producer composition & productivity
- Sediment accumulation and storage
- Hydrology
- Biogeochemistry
- Surface watergroundwater dynamics
- Remote sensing
- Mechanistic and Landscape modeling

Sea-level rise and coastal vulnerability

Florida Coastal Everglades carbon cycle research

Shark River Slough (SRS)

Freshwater Slough

TS/PH-2

Oligohaline Ecotone

SRS6

Marine

Taylor Slough (TS/PH)

Carbon dynamics are largely modulated by changes in primary productivity

- Biomass dynamics (and legacies) control how communities will respond to future impacts of water management and sea level change and drive changes in ecosystem carbon stocks and fluxes.
- Organic matter accumulation and turnover are the primary processes controlling soil formation and accretion in mangrove forests and sawgrass marshes in the ecotone.

Values for annual net ecosystem C balance (NECB), net ecosystem exchange (NEE), and derived aquatic C (Aq C) export [NECB = -NEE + Aq C (flux]

		g C m ⁻² yr ⁻¹					AaC
Ecosystem	Site	NECB	-NEE	Soil	AG	BG	Export
Marsh	SRS	621 ± 59	-45 ± 16	90	291 ± 35	240 ± 48	666 ± 61
	TS	457 ± 61	50 ± 15	90	122 ± 12	245 ± 60	407 ± 63
Mangrove	SRS	1,038 ± 88	1,170 ± 127	194	638 ±36	206 ± 80	-131 ± 155
Seagrass	FL Bay				75 ± 40		

^{ψ} Mangrove root production estimates for size classes < 2 mm to 20 mm in diameter (to a depth of 90 cm). AG = aboveground. BG = belowground. SRS = Shark River Slough. TS = Taylor Slough. Troxler et al., 2013

I. Influence of hydrologic change on marsh aboveground sawgrass biomass

Everglader National P

Gulf of Mexi

II. Influence of salinity on marsh aboveground sawgrass biomass and net ecosystem exchange

- Sea levels projected to rise up to another 0.15m by 2030 and 0.5m by 2060.
- As sea levels rise, salinity & inundation will increase.
- Further peat collapse is projected.
- Mechanisms

 hypothesized include
 decreased plant
 productivity and increased
 microbial respiration.

H2Graphics & Davis

Sea level rise with freshwater restoration

2 Foot SLR No Flow Restoration

2 Foot SLR + Flow Restoration

EVERGLADES NATIONAL PARK

Evidence of conversion of sawgrass peat marsh to ponds

Main park road

Field experiment site

The effects of projected sea-level rise on Everglades coastal peat marsh ecosystems

Objectives:

- Investigate the potential for and mechanisms of peat collapse in coastal freshwater and brackish marsh ecosystems of the southern coastal Everglades using integrated mesocosm and field manipulations
- 2) Develop actionable information and best management practices for water management and conservation of coastal south Florida

FIELD EXPERIMENTS IN FRESHWATER & BRACKISH SITES

Ecosystem response coincides with sawgrass biomass response in outdoor mesocosms

- Elevated (20 psu), continuous salinity exposure significantly decreased plant CO₂ uptake (NEE)
- Inundation had no effect on NEE
- Decreased NEE coincided with decreased aboveground biomass and adventitious root biomass

III. Spatio-temporal dynamics along the "White Zone" and landscape change

- Surface water and porewater salinity, DOC, inorganic nutrients (3-4/yr)
- Soil pH, Eh, OM, TP, TN, TC (annual)
 - Cladium biomass & Eleocharis density (wet/dry season; 2014present)

Salinity transect sites in Everglades National Park identifying West, Central and East Taylor Slough transects (1, 6 and 2, respectively) West and East C111 transects (3 and 4) and transect east of US1 in the Model Lands (5).

- Days since flow from
 S332D & C-111
 influence surface
 water salinity greatest
 in sites east of TS & in
 W & E C-111
 (including southern
 most sites)
- No effect on porewater salinity
- Very low *Cladium* biomass, absent in most "white zone" sites
- Inverse relationship between *Cladium* and *Eleocharis* stem density

Coastal ecotone mapping

Remote sensing facilitates detection of patchy, fine-scale changes with high spatial precision

- high spatial resolution of satellite data
 - adequate spectral resolutions to map classes of interest

Gann & Richards

Visual vs. Automated – Grid vs. Vector

IV. Influence of salinity & TP on marsh aboveground sawgrass biomass

Taylor Slough freshwater and coastal marsh sites – sawgrass ANPP and salinity at Argyle Henry

Surface water salinity and TP at Argyle Henry

Subsidy P - salinity stress experimental manipulation

How will increasing discharge of brackish water elevated in P influence sawgrass productivity in freshwater peat marsh?

Florida Bay Interagency Science Center, Key Largo, FL

Subsidy P - salinity stress experimental manipulation – freshwater peat marsh

- Continuous dosing with 10 psu salinity water did not influence ANPP after 2 years
- Low level phosphorus addition increased ANPP after 2 years
- Salinity dampened ANPP under conditions of low P additions
- More work is needed

Florida Coastal Everglades carbon cycle research: some lessons learned

- Different elements of the Everglades ecotone exhibit different signatures of carbon sources and sinks.
- Inundation and salinity levels largely control the magnitude of carbon sources and sinks. More work is needed to understand subsidy (P) – stress (salinity) interactions.
- Integrating high resolution vegetation mapping and ecosystem characteristics and dynamics will enable landscape change detection and improved scenario development
- Freshwater releases represent an important tool for water managers to mitigate peat collapse and carbon losses in the Everglades, and to ameliorate landscape-level reductions in vegetated landscape.