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Florida Coastal Everglades carbon cycle research
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Image on left: Flow is restored
beneath the 1-mile bridge at the
Tamiami Trail along the northeast
boundary of the Park, May 2013.

4 Project cost: $93 million USD.

o Everglades science helped inform

8l the cost benefits of this project and
a proposed additional 2.6 mile
bridge.

Ecosystem
services




ECOTONE IN THE BALANCE

The Everglades ecotone expresses the
balance of marine and freshwater
Influences, driven by local to global socio-
hydrological presses and pulses

Shark River Slough

High N:P Low N:P

Ecosystem Productivity

Everglades National Park
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Historic Flow Current Flow Future Flow

Arrows show dry season seawater INFLUX into the Everglades creeks and
groundwater (not to scale)



Carbon dynamics determine the
persistence of coastal Everglades wetlands
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Sea level rise & freshwater restoration
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Florida Coastal Everglades — integrated
approaches to understanding landscape change
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Sea-level rise and coastal vulnerability

Mechanistic Class-specific
studies and vegetation New models of

long-term biomass and C coastal vulnerability
Estimates

Drivers of
primary
productivity




Florida Coastal Everglades carbon cycle research

Shark River Slough (SRS)
SRS1c 2 P _SRS4 SRS6

Freshwater 0||gohallne Marine
Slough Ecotone
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Taylor Slough (TS/PH)



Carbon dynamics are largely modulated by changes in
primary productivity

« Biomass dynamics (and legacies) control how communities will respond to future
Impacts of water management and sea level change and drive changes in ecosystem
carbon stocks and fluxes.

 Organic matter accumulation and turnover are the primary processes controlling soil
formation and accretion in mangrove forests and sawgrass marshes in the ecotone.

Values for annual net ecosystem C balance (NECB), net ecosystem exchange (NEE), and derived
aquatic C (Aq C) export [NECB = -NEE + Aq C (flux]

gCm2yr’!’
Ecosystem Site NECB -NEE Soil AG
SRS 621 £ 59 —-45+ 16 90 291+ 35 | 240 + 48 666 + 61
Marsh
TS 457 + 61 50 + 15 90 122 £ 12 | 245+ 60 407 + 63

MangroveY SRS 1,038+£88 | 1,170+ 127 | 194 | 638 +36 | 20680 | —-131+ 155

Seagrass FL Bay 75 + 40

¥ Mangrove root production estimates for size classes < 2 mm to 20 mm in diameter (to a depth of 90 cm).
AG = aboveground. BG = belowground. SRS = Shark River Slough. TS = Taylor Slough. Troxler et al. 2013



l. Influence of hydrologic
change on marsh aboveground
sawgrass biomass

350 4 Hydrologic restoration action
influencing upstream freshwater sites?
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Il. Influence of salinity on marsh aboveground
sawgrass biomass and net ecosystem exchange

@ CL“ I" (DIA]T MANGHROVES

Saw (;.La marh b mpuu o) noo'?-;l-n m!n:v 0 trestrmoder
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Sea level rise with freshwater restoration

2 Foot SLR 2 Foot SLR
No Flow Restoration + Flow Restoration




EVERGLADES NATIONAL PARK
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The effects of projected sea-level rise on
Everglades coastal peat marsh ecosystems

Objectives:

1) Investigate the potential for and mechanisms of peat collapse in
coastal freshwater and brackish marsh ecosystems of the southern
coastal Everglades using integrated mesocosm and field

manipulations

2) Develop actionable information and best management practices for
water management and conservation of coastal south Florida
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Ecosystem response coincides with sawgrass biomass
response in outdoor mesocosms

NetEcosystemExchangel p=0.002
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Elevated (20 psu), continuous salinity exposure significantly
decreased plant CO, uptake (NEE)

Inundation had no effect on NEE

Decreased NEE coincided with decreased aboveground biomass
and adventitious root biomass



lll. Spatio-temporal dynamics along the

“White Zone” and landscape change

Date established:
< DEC 2009
<& AUG 2011

Surface water
and porewater
salinity, DOC,
inorganic
nutrients (3-
4/yr)

Soil pH, Eh, OM,
TP, TN, TC
(annual)
Cladium
biomass &
Eleocharis
density
(wet/dry
season; 2014-
present)

Salinity transect sites in Everglades National Park identifying West, Central and East Taylor Slough
transects (1, 6 and 2, respectively) West and East C111 transects (3 and 4) and transect east of US1 in the

Model Lands (5).
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Coastal ecotone mapping

E Cladium Marsh E Shrub - Graminoid Marsh - Mangrove Trees [ RemOte SenSlng
[: Graminoid Marsh Sparse [: Mangrove Shrub - Graminodd Marsh - Mamngrove Dwarfs ‘ fa(:ilitates

B s . e P s detection of

3 patchy, fine-scale
changes with
high spatial
precision

- high spatial
resolution of
satellite data

- adequate
spectral
resolutions to
map classes of
interest

Gann &
Richards




Visual vs. Automated — Grid vs. Vector

P

B Mixed mangrove
[ | Mangrove Scrub - Red

Source: University of Georgia

MMU: ~ 10,000 m2

Data: Aerial Photography 1994/95
Method: Manual Polygon Digitization

B Transitional Bayhead Forest

[ Marsh Sparse Vegetation

Red Mangrove Scrub-Open Marsh !:| Non-Mangrove Shrub

Source: SFCN

MMU: 2,500 m2

Data: Stereo Photography 2012
Method: Grid Interpretation

- Mangrove Tree

:] Mangrove Dwarf

MMU: 18 m2
Data: World View 2 - 2012
Method: Random Forest Classifier



V. Influence of salinity & TP on marsh
aboveground sawgrass biomass
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Surface water salinity and TP at Argyle Henry
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Subsidy P - salinity stress experimental manipulation

High N:P

Ecosystem Productivity

Taylor Slough s

How will increasing
discharge of brackish water
Low N:P elevated in P influence
sawgrass productivity in
freshwater peat marsh?

. E T | | |
-p : -p P -P P
m @ 2 Il 2 il 2 illi *
-P = No phosphorus added I Control l +Salinity I

+P = Phosphorus added

Florida Bay Interagency Science Center, Key Largo, FL



Subsidy P - salinity stress experimental manipulation
— freshwater peat marsh
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* Continuous dosing with 10 psu salinity water did not influence
ANPP after 2 years

* Low level phosphorus addition increased ANPP after 2 years

* Salinity dampened ANPP under conditions of low P additions

* More work is needed



Florida Coastal Everglades carbon cycle research:
some lessons learned

v/ Different elements of the Everglades ecotone exhibit different
signatures of carbon sources and sinks.

v/ Inundation and salinity levels largely control the magnitude of
carbon sources and sinks. More work is needed to understand
subsidy (P) — stress (salinity) interactions.

4 Integrating high resolution vegetation mapping and ecosystem
characteristics and dynamics will enable landscape change
detection and improved scenario development

v/ Freshwater releases represent an important tool for water
managers to mitigate peat collapse and carbon losses in the
Everglades, and to ameliorate landscape-level reductions in
vegetated landscape.



