

Innovative Hydraulic Modeling Approaches Used During the Design of an Everglades Treatment Wetland

Maria Loinaz¹, Brent Whitfield², John Visconti³, Alexis San Miguel⁴, Jeremy C. McBryan⁴, and Ken Konya⁴

²ADA Engineering, Inc., West Palm Beach, FL, USA

⁴South Florida Water Management District, West Palm Beach, FL, USA

³MWH, West Palm Beach, FL, USA

Everglades Restoration Strategies

STA-1W Expansion

Overall Approach for Expansion Design

- Initial modeling calibrate 1D and 2D models of existing STA-1W (2-month wet period)
- 2. Screening tool to evaluated 12 alternatives.
- 3. Recalibration of a 1D model
 - Two-year simulation period
 - Manual and automatic calibration techniques to generate Manning's n curves for SAV and EAV.
- 4. Evaluate the design of Expansion 1 (Interim Conditions Model) with 1D and 2D models

#	CONFIGURATION		DIRECTION		ALIGNMENT			CHANGES STA-1W	
	Series	Parallel	E-W	N-S	Н	D	V	MINOR	MAJOR
1	Χ		Χ			Χ			
2	Χ		Χ		Χ				
3		Χ	Χ			Χ			
4		Χ	Χ		Х				
5	Χ			Χ		Χ			
6	Χ			Χ			Χ		
7		Χ		Χ		Χ			
8		Χ		Χ			Χ		
9	Χ		Χ		Χ			Χ	
10	Χ			Χ			Χ	Χ	
11	Χ		Χ		Χ				Χ
12	Χ			Χ		Χ	Χ		Χ

Existing STA1W Model

Existing STA1W Model Calibration

Interim Conditions Model Approach

- Set target operations
 - Wet/dry season stages
- 1D Model (MIKE 11)
 - 100-yr design storm
 - 41-yr simulation
- Hydraulic Design Criteria
 - Depth: maximum, average, minimum
 - Velocities: maximum in wetland and canals

Interim Conditions Design

- Modifications to the original design of preferred alternative based on preliminary results and further analysis
 - Topography (head losses)
 - Wind fetch
 - Operational flexibility
- Final design features
 - Divide structures
 - Cell re-configuration
 - Outflow structure types and sizes

1D Model Results

Peak Conditions during 100-yr Design Storm

TREATMENT CELL	DEPTH (ft) ¹	Velocity (ft/s) ²
6	3.5	0.03
7	3.3	0.06
8	3.4	0.06

¹ Maximum allowable depth in an SAV treatment cell = 3.7 ft

Long term (41-yr) simulation

² Maximum allowable velocity in a treatment cell = 0.1 ft/s

2-Dimensional Models

- Some hydraulic features are difficult to simulate in a 1D model
 - Wetland-canal connections
 - Spatial distribution of velocities
- Use models to evaluate
 - Size of canals
 - Location of Structures
- Model Topography (ft-NGVD)

- 16-ft grid resolution (simulate ditches)
- Three steady-state flow conditions
- Use calibrated n curves with a dynamic equilibrium approach

2D Results Cell 6 – canal sizing

2D Results Cell 7 – structure location

2D Results Cell 8 – three configurations

Conclusions

- Challenges in modeling the hydraulics of treatment wetlands
 - Relevant factors: seepage, unquantified flow, head losses, depthdependent roughness, short-circuiting.
 - 1D vs 2D
- Stage calibration results are accurate, but better measured flow estimates are needed to close water budgets.
- 1D model iterations were used to design a system that meets the STA hydraulic criteria.
- 2D models were used to size canals and space structures by evaluating the velocity distributions and flow pathways in the treatment cells.
- Water quality benefits will be quantified using DMSTA models.

Thank you!

