BENTHIC FORAMINIFERAL ASSEMBLAGES IN BISCAYNE BAY

Implications of Natural and Anthropogenic Change in South Florida Marine and Marine-Margin Ecosystems

Christopher P. Williams

Acknowledgements

- Dr. Scott E Ishman, Geology Department and Ecology Institute, Southern Illinois University Carbondale
- The United States Geological Survey
- South Florida Water Management District
- Biscayne National Park

Purpose and Data

- Identify natural and anthropogenic changes to the marine environments of Biscayne Bay in recent history
- Provide information about past environmental conditions and thus restoration goals
- Benthic foraminifera are excellent indicators of environmental conditions and therefore of ecosystem changes
- Seven modern sites and five core sites and statistical analyses of the assemblage data

Modern Sample Locations

Core Sample Locations

Comparison of Samples

MODERN SAMPLES

Near-shore samples BB7 and BB9 experienced fluctuating mesohaline and polyhaline halinities

CORE SAMPLES

Near-shore cores

Chicken Key, Black Point North

and Middle Key hypothesized to be most like modern sites BB7 and BB9

Mid-bay samples BB1, BB2, BB3, BB4 and BB5 had relatively stable euhaline conditions

Mid-bay cores

No Name Bank and **Featherbed Bank** hypothesized to be most like modern sites BB1-BB5

Preliminary Data

- Preliminary data on benthic foraminifera for this study were first published in United States Geological Survey Open File Reports 03-375 and 2004-1312 of Wingard et al.
- ²¹⁰Pb geochronology data for the cores are from these reports and United States Geological Survey OFR 2007-1203 of Wingard et al.

Modern Data

- 41 samples collected from 7 sites
- A minimum of 300 specimens collected from each sample
- Data compiled in a spreadsheet of species related to individual samples
- Data were reduced to remove rare occurrences of taxa, analyzed via Bray-Curtis similarity for the hierarchical cluster analyses and processed in the Non-Metric Multidimensional Scaling (MDS) algorithm

Modern Hierarchical Cluster

Modern MDS Plot

Modern Data Discussion

- Group 1 clearly divides from Groups 2 and 3 at 65% similarity
- Group 1 includes the brackish, near-shore modern samples
- Groups 2 and 3 are divisible at 65% similarity:
 Group 2 has many samples from a hard ground dominant site and Group 3 is mostly soft sediment bottom sites
- □ Groups 2 and 3 are both euhaline

General Trends

- Mesohaline sites have dominant occurrences of the taxa Ammonia and Elphidium that decrease as halinity increases
- Euhaline sites have higher abundance of the taxa Miliolinella, Quinqueloculina and Triloculina with rare occurrences of Ammonia and Elphidium
- Polyhaline sites have taxa occurrences that are transitional between those observed in the mesohaline and euhaline sites

Biscayne Bay Hierarchical Cluster

Biscayne Bay MDS Plot

Biscayne Bay Interpretation

Importance of Near-shore Cores

- Near-shore cores were collected based upon the hypothesis that they exhibit greater sensitivity to recent marine ecosystem change
- Mid-bay core assemblage data address historical seagrass change, particularly to *Thalassia*, but do not display significant ecosystem changes with respect to halinity
- The near-shore cores show rapid changes to the foraminiferal assemblages in recent history, including the 20th century

Near-shore Cores Interpretation

Black Point North Interpretation

Black Point North Foraminifera

Middle Key Foraminifera

Near-shore Cores Salinity Proxy

Conclusions

- The Near-shore core benthic foraminiferal assemblages show distinct increases in marine halinity
- Corroborating data indicate that the base of the Middle Key core is terrestrial and it transitions to freshwater wetland mid-core, but conflicting geochoronologic data do not pinpoint the timing of environmental deposition
- First significant occurrence of foraminifers at this site is in the early 20th century

Conclusions

- The timing of the increase of salinity and abundant foraminifers correlates to the construction of the Key West Extension of the Florida East Coast Railway
- By 1950 A.D. the site assemblage is dominated by foraminifera indicative of euhaline conditions, but with a high degree of stress
- The Black Point North core has been dominantly mesohaline for most of the 19th and 20th centuries

Conclusions

- In the mid-1980s the ecosystem rapidly shifted from a 5-10 ppt mesohaline environment to a mesohaline-polyhaline environment with salinity approximately 18 ppt
- The Chicken Key site reveals a mid-1980s shift from a lower polyhaline to upper polyhaline environment with increasingly marineindicative foraminiferal assemblages
- Mid-bay sites show an increase in continental shelf species post 1950 A.D.

Future Questions

- Sea-level rise in South Florida is a reality, and rapid ecosystem change in the past 30 years is clearly defined
- Are anthropogenic changes to the marine ecosystems real, or are they coincidental to natural environmental transitions in a marine transgression?
- Can the observed, fundamental environmental shifts be reversed, or has anthropogenic activity merely accelerated the effects of the Holocene marine transgression?