SFWMD Regional Hydrologic Models 101: Modeling for Restoration Planning and Implementation

Jayantha Obeysekera Walter Wilcox

> Workshop GEER 2008: Greater Everglades Ecosystem Restoration July 29, 2008

Workshop Outline

Part I

- Water Management System
- South Florida hydrology
- Regional Models
- Data

Part II

- South Florida Water Management Model (SFWMM)
- Application of SFWMM

Part II

- Next generation tool : Regional Simulation Model (RSM)
- Challenges

System Modifications

Peat Thickness: Natural & Current

0-1 1-2 2-3 3-4

8-0 9-10 10 - 1111 - 1212 - 13 13 - 1414 - 15 15 - 16

Monthly Hydropattern

HYDROLOGIC & ENVIRONMENTAL SYSTEMS MODELING

ιω

Characterizing Hydrology

Land Phase of the Hydrologic Cycle:

- Precipitation
- Evapotranspiration
- Flows, both below (groundwater) and above (surface water) the ground
- System storage (in marshes: water depths and hydroperiod)
- Ocean boundary
- Wellfields (domestic uses, landscape irrigation)

Why regional-scale modeling?

- Large subsystems:
 - Lake Okeechobee
 - Remenant Everglades
 - Agricultural
 - Urban
- Complex Operations with system-wide implications
- Multiple Objectives: optimization (time and space)

Lake Okeechobee Management Zones (Rule Curves)

HYDROLOGIC & ENVIRONMENTAL SYSTEMS MODELING

<u>،</u> [،

Long Term pattern of Rainfall

South Florida: Soils

- Sandy Soils on the Coast
- Peat Soils in the remnant Everglades and the EAA

Soil Subsidence

Land Subsidence in EAA

South Florida: Hydrogeology (simplified)

Biscayne Aquifer: Hydraulic Conductivity

- Limestone
- Solution holes
- Highly transmissive

Complex Water Management System

- Primary System is more than just the C&SF Project
- 1,969 miles of canals & levees
- 160 major drainage basins
- 501 major structures
 - 206 remotely operated
 - 295 manually operated or fixed structures
- 50 pump stations
 - Almost ½ with remote operation capability

HYDROLOGIC & ENVIRONMENTAL SYSTE

Primary System Oprations

- Modes of Operation:
 - Drainage & Flood Control
 - Water Supply
- Regulation Schedules for major water bodies (Lakes, Water Conservation Areas)
 - Flood Control, Water Supply, "Minimum"
- Canals (Maintenance Levels)
- Structures (Opening and closing of gates for water supply and flood control)
- Pre-storm drawdown

Drainage Responsibilities

Canal/Groundwater Interaction

Normal Dry Season Operations

Canal/Groundwater Interaction

Normal Wet Season Operations

Canal/Groundwater Interaction

Pre-Storm Drawdown Operations

South Florida Water Management Model

Regional scale
Distributed
Continuous simulation
Surface
water/groundwater

Lake Okeechobee to Florida Bay
2 mi. x 2 mi. grid cells
(> 7000 square miles)
time step: 1day
period of simulation: 1965-2000

MAT 5 Lake Okeechobee awgrast Plains Peat Transverse Glades Mari Transverse Glades

Natural System Model (NSM)

MANAGEMENT DISTRICT

- A computer model of the pre-drainage system
- Integrated surface and ground water hydrologic model
- 2,382 2 mile x 2 mile grid cells
- Lake Istokpoga to Florida Bay

HYDROLOGIC & ENVIRONMENTAL SYSTEMS MODELING

R

Relationship between NSM and SFWMM (2x2)

SFWMM (2x2) **NSM Parameter Values**

Same climatic input to both models

Input Data for SFWMM

Static Data

topography, landuse, aquifer characteristics, location and attributes of canals, levees, structures and reservoirs

Time Dependent Data

daily rainfall, daily reference ET, well pumpages, boundary flows and stages

Operations-Related Rules & Policies

regulation schedules, water restriction trigger levels, water delivery targets and canal maintenance levels

Spatio-Temporat Rainfall Dataset

- Daily Rainfall (1965-2005)
 - Spatially interpolated to create a spatial dataset for each day
- Binary format for efficiency
- Triangulated dataset available

Reference Evapotranspiration

Hydrologic models are run in predictive mode so atmospheric control on ET must be isolated from the effects of landscape control. Therefore, long-term (at least 1965-2005) daily estimates of Reference ET (<u>R</u>ET) are required.

Landscape Coefficient Function for Wetlands

DEPTH TO THE WATER TABLE

Reference Evapotranspiration (RET) : Previous Efforts

- Previous efforts limited by lack of distributed meteorological data for long periods of simulation required for modeling (40+ years).
- Previous estimates have been based on the District's
 Simple Method (Abtew, 1996) wet-marsh PET with readilyavailable daily temperature range as surrogate for solar radiation (Hargreaves and Samani, 1982)

$$ET_{p} = \frac{K_{1} * R_{s}}{\lambda} \quad R_{s} = \tau R_{a} = K_{r} (T_{max} - T_{min})^{0.5} R_{a}$$

Alternative Methods for RET Estimation

Penman-Monteith Combination Method (Monteith, 1981) – Combines energy and aerodynamic aspects of ET and includes aerodynamic resistance to heat and vapor transfer and surface resistance to vapor transfer.

$$\mathrm{ET}_{\mathrm{p}} = \frac{\Delta(\mathrm{R}_{\mathrm{n}} - \mathrm{G}) + \rho \mathrm{c}_{\mathrm{p}}(\mathrm{e}_{\mathrm{a}} - \mathrm{e}_{\mathrm{d}}) 1/\mathrm{r}_{\mathrm{a}}}{\lambda[\Delta + \gamma(1 + \mathrm{r}_{\mathrm{c}}/\mathrm{r}_{\mathrm{a}})]}$$

FAO 56 P-M (Smith, 1991) and ASCE-PM standardized reference equation (Itenfisu, 2003) define reference grass parameters

Priestley-Taylor Method (Priestley and Taylor, 1972) – Assumes aerodynamic component is a constant fraction of energy component. Not applicable to arid areas where advection of sensible heat to a crop is important (α would be > 1.26).

$$\mathrm{ET}_{p} = \alpha \frac{\Delta(\mathrm{R}_{\mathrm{n}} - \mathrm{G})}{\lambda[\Delta + \gamma]}; \alpha = 1.26$$

What Is Different Now?

- Recent advances in global and regional atmospheric reanalysis and regional surface hydrologic data assimilation
- Three datasets evaluated include:
 - 1. NLDAS 1996-2005, ~12 km, 1 hr North American Land Data Assimilation (NLDAS) system with meteorological forcing from NCEP's Eta regional atmospheric model which produces 3-hourly data on a 40 km grid.
 - 2. Hydro51 1948-1998, ~12 km, 1 hr NLDAS system with meteorological forcing based on spatially interpolated Global Reanalysis data (2.5 degree or ~265 km in South Florida) and measured rainfall.
 - 3. NARR 1979-2005, ~32 km, 3 hr North America Regional Reanalysis which couples the Eta atmospheric model with the Noah land surface model with remotely sensed meteorological data being assimilated directly.

HYDROLOGIC & ENVIRONMENTHAd Lolos & TEE Wirsh men QaD Eylstehn G Modeling

30

Generating the RET Dataset

- Penman-Monteith was selected for RET estimation with reference grass parameters as defined by FAO-56 (Smith, 1991), which closely tracks ASCE P-M standardized reference equation. Note that no corrections were performed for non-reference conditions at drained/urbanized areas.
- Since NARR only covers the period 1979-2005, it had to be supplemented with Hydro51 for the period 1948-1978. Hydro51 RET (12 km) was first aggregated up to the NARR resolution (32 km) and then rescaled to match monthly means and stdev in NARR RET.

$$H' = \frac{(H - \overline{H})}{\sigma_H} \sigma_N + \overline{N}$$

HYDROLOGIC & ENVIRONMENTHAdeloogit & TEE Wir Son MarQad Eylstehn G Modeling

RET Dataset

 1948-2005 dataset generated based on Natural Neighbor interpolation

HYDROLOGIC & ENVIRONMENTA/LoloSync ScTEEMMrSanmMarQuaD EylstehmSc Modeling

37

