

The role of suspended sediment in Everglades biogeochemistry and material redistribution

U.S. Department of the Interior U.S. Geological Survey

Potential importance of suspended sediment transport

Ridge and slough topography

Larsen et al. 2007. Ecological Monographs

SFWMD

P transport

South Florida Ecosystem Assessment, EPA 2000

What suspended sediment? Clear water column of Everglades

Differential transport of P fractions

Retention of P forms in South Florida treatment wetlands:

Soluble Reactive P > Particulate P > Dissolved Organic P

Davis et al. 1981. SFWMD

DeBusk et al. 2004. Ecological Engineering
White et al. 2004. Hydrological Processes

Surprising role of suspended sediment in P cycling

³²PO₄ added to 6 1-m² mesocosms

Initial P uptake by fine suspended particles (<100 µm)

Spatial patterns in suspended particle characteristics

Fine (<100 µm) suspended sediment characteristics

Site	Total suspended sediment (mg L ⁻¹)	Total particulate P (μmol L ⁻¹)	Total particulate N (μmol L ⁻¹)	Percent particulate P	Percent particulate N	Particulate N:P (molar)
Lox8	2.71 ± 0.09	0.19 ± 0.01	6.8 ± 0.2	43 ± 2	7 ± 0	36 ± 3
F1	$\textbf{0.85} \pm \textbf{0.12}$	0.31 ± 0.02	$\textbf{4.8} \pm \textbf{0.7}$	25 ± 2	3 ± 0	15 ± 1
F4	1.19 ± 0.41	0.18 ± 0.00	$\textbf{3.2} \pm \textbf{0.1}$	38 ± 0	2 ± 0	18 ± 0
U3	0.81 ± 0.11	0.10 ± 0.01	$\textbf{3.7} \pm \textbf{0.2}$	27 ± 0	2 ± 0	38 ± 0
5A Slough	1.90 ± 0.27	$\textbf{0.09} \pm \textbf{0.01}$	$\textbf{6.5} \pm \textbf{0.5}$	31 ± 3	10 ± 0	69 ± 1
5A Cladium	2.15 ± 0.30	0.11 ± 0.01	$\textbf{7.0} \pm \textbf{0.3}$	33 ± 3	10 ± 1	66 ± 1
SrsA	0.69 ± 0.14	0.05 ± 0.00	3.1 ± 0.2	20 ± 2	3 ± 0	65 ± 1

TSS was low (1.5 mg/L)

Geometric mean particle size:

31% of P was particulate

Particulate P was more abundant and more labile with P enrichment

Total Suspended Sediment = 11 μ m Particulate N = 6 μ m Particulate P = 3 μ m

P speciation in fine and coarse particles

Noe et al. 2008. in review

Noe et al. 2007. Limnology & Oceanography

Ridge and Slough maintenance

Hypothesis: Lower sediment concentrations in ridge (due to greater deposition and possibly filtration)

Directly sampled fine suspended particle (<100 µm) concentrations and P and N content

R/S (ridge, slough)
Depth (upper, middle, lower)
Time (through wet season)

Fine particle concentrations

TSS: mean = 0.94 mg/LR/S: P = 0.889

<u>PP</u>: mean = 0.10 μ M R/S: P = 0.370

Controls on suspended sediment abundance

Not water velocity

(no correlation, slow water velocity, and only small particles present)

Not vegetation

Sun

Wind and temperature of air and water

Bioturbation

Shallow water

Hurricanes

Sources of suspended particles

EAA farm canals:

macrophytes and their detritus (Stuck et al. 2002)

STA treatment wetlands:

OM, plankton (Farve *et al.* 2004) Periphyton, OM (Harris *et al.* 2007)

Everglades:

in situ production (periphyton?) (Leonard et al. 2006) bacteria (Noe et al. 2007) bacteria and periphyton, not floc (Noe et al. in review)

What flow velocity is needed to entrain sediment?

Flow enhancement in the field

cm/s: 0.3 1.7

3.2

5.3

5.7

Total particulate P speciation

No change in particulate P concentrations or speciation at enhanced velocity

Flume fluxes

Velocity	Q (L/s)	LISST flux (µL/s)	TSS flux (mg/s)	PP flux (µmol/s)	microbial PP flux (µmol/s)	refractory PP flux (µmol/s)
Ambient	0.93	0.40	0.48	0.13	0.08	0.01
1	4.63	7.50	3.58	0.70	0.37	0.10
2	10.42	20.36	4.71	1.33	0.80	0.08
3	13.55	29.09	16.27	2.35	1.21	0.33
4	14.23	37.19	11.99	2.25	1.34	0.30

→ Enhanced velocity increased downstream fluxes

Solute and particle transport: transport, dispersion, and interception

Slough:

Dual Br and TiO₂ (0.3 μm) injection

Efficient particle filtration by floating vegetation ($L_{1/2}$ =1 m)

Different particle vs. solute transport

Ridge:

Fluorescing latex microspheres (1 µm)

Particle filtration: L_{1/2}=128 m

Saiers et al. 2003. Geophysical Research Letters Harvey et al. 2005. Water Resources Research Huang et al. 2008. Water Resources Research

