# Cost Effective Regional Phosphorus Concentration Mapping of Open Water



**Corps of Engineers** 

Chris Osburn Rick Coffin Peter Besrutschko



**Naval Research Laboratory** 

## Strategy for Regional Phosphorus Mapping using Remote Sensing

- Background
- Theory
- Results Showing Relationships
- Conclusions

## Water Parameters (~70% Accurate) Successfully Estimated by Remote Sensing

- Chlorophyll
- Suspended Sediment/Turbidity
- Dissolved Organic Matter
- Temperature
- Salinity
- Potential for Phosphorous ?



#### **PRE-TREATMENT POOLS** 40' -40" C-51 **PSTA** <sub>4</sub>15′ Water Hyacinth ~ 100 - 1000 ppb P Head Tank SAND **15** ON-SITE LIMESTONE OVE PEAT LIMESTONE OVER PEAT SLUDGE OVER RIVIERA 30 -Distance (ft) Periphyton LIMESTONE mat 60 75 90 100 Calcareous Periphyton Mat -/ Dag (Cells 4 & 2) **Agricultural** Ditch

#### CDOM Absorption vs DOC Concentration at 412 nm



### Stable Isotope value vs DOC Concentration



#### CDOM Absorption vs S value



### Total P vs CDOM Absorption



### Total P vs CDOM Spectral Slope





#### **TP Monitoring Algorithm Certification**



#### Conclusions

- S value, a412, CDOM,TP show strong correlation.
- This observation calibrates application of CDOM hyperspectral surveys for prediction of TP transport.
- This finding justifies development of algorithms in over flight and satellite imaging for monitoring TP.