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N Importance

* Limiting nutrient in G
4. & Feb. 4,2002

Florida Bay, e T
Coastal Systems

— algal blooms/loss
of seagrasses




N Importance

* Limit to productivity in P-loaded
areas

 Limit to P retention In treatment
areas

« Greenhouse gas emissions
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Processes

Deposition/Inputs

N, Fixation

NH; Volatilization
Nitrification/Denitrification
Mineralization

Photolysis




Cycles

NH, N,/N,O
Volatilization

Nitrogen

Fixation

Major Components

« Water
e Soils

 Biota
— Macro-, Microphytes
— Consumers (Food Chain)
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« Major source of N
— fertilizer
— peat oxidation
— Okeechobee

« 1-5 Metric Tons yr'

Mexico
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Periphyton

*Assemblages, ofi prokanyotic and
eukaryotic algae.

*Occur at interfaces ofi water-solid
substrates and the water surface.
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Inglett et al., 2004




Uptake of Water. column N

Benthic Floc
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Slough Niliracing/Eate

Wet Season - WCA-2A
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N-Cycling in Southern Marshes

15N Tracer Addition
1.5 pmlflol LA

Ecotone: Sawgrass Habitat
317.84gNm=2
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Above
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Sawgrass
Below
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0.7599

0.7249 :
0.6236 Periphyton
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58.130
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0.5280

Soil 1-5 cm
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Wozniak et al., in prep




N=-Cycling in Southern Marshes

. Ecotone: Sawgrass/Mangrove Habitat
15N Tracer Addit
1_?3?/.:0. T 318.02 g N m?2

\ 2.6879 Mangrove
3 1047 Periphyton Apical M.

6.8949 0.0111

0.0000
17.5475 0.0021
11.4866 0.0011
6.8967

Mangrove
Consumers Leaves
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Above E E 0.0014
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Wozniak et al. In prep
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The Mangrove Ecotone Region

An extensive region of the Everglades
limited by phosphorus availability due to
lack of terrigenous sediment input and
reduced freshwater flow
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ANPP is 6 times higher in the western than in the eastern region




Mangroves: Major N Surface Water inputs-
(metric tons yr)

N

Mangrove Ecotone

« Most N studies
perfomed in Shark
River and Taylor
River Sloughs

Larger N loading
(surface water) in
Shark River
Slough than in
Taylor

Seasonal patterns,
controlled by
hydrology

10 20 30km

Rudnick et al 1999; Sutula et al 2001, 2003




Estimated N budgets (mg N miz yr:)

Mangrove Ecotone
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Rudnick et al 1999; Sutula et al 2001, 2003




Mangroyves: Denitrification rates;/(mg Nim = yr)

e Still uncertainty in
budget (lack of in situ
denitrification and N
fixation studies)

e Denitrification rates
are similar in Shark and
Taylor Rivers

* Denitrification rates in
Taylor River are [ NO,]
limited as result of low
in situ concentrations

* Nitrification is limited
by [PO,] availability in
soil pore waters

N

M.

rove Ecotone

10 20 30km

Rivera-Monroy, in prep




Effects of Phosphorus Dosing

Increase N mineralization (White and

Reddy, 2000) N flux (e.g., Newman et al.,
2001)

Increased NH," increases potential
nitrification (White and Reddy, 2003)

Increases N demand

Increases N, fixation (Inglett et al.,
2008)




P Influence on Soil N Dynamics

N Flux N
Potential — Mineralization

N
Limitation
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Restoration?

Current Flow The Plan (CERP) Flow

SOURCE: WWL EVYERGLADESFLAWK.ORG




Restoration Goals

Minimize EAA soil oxidation
Reduce P export to WCA's
Level out the hydrology/hydroperiod

Increase freshwater flow to FL
Bay/Gulf of Mexico




Process-level Understanding

* Deposition/Inputs:
— Quantifyable (managed/atmospheric)

* N, Fixation:
— Significant process

— Spatially variable
— P-regulated, Hydrology?

* Mineralization

— Key factor in N flux transport

— P role established, but ecosystem linkages
not investigated




Process-level Understanding

* Nitrification/Denitrification:

— Important for mass balance/budget
— Largely undocumented (in situ rates)
— Effect of P as yet undetermined

— Role in periphyton mats?




Process-level Understanding

* NH; Volatilization:
— Conditions may exist...unverified

* Photolysis

— Important determinant of N availability/fate
— Poorly studied except in marine systems

 New processes
— Anammox
— Nitrate reduction coupled to S/CH,
oxidation
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