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Objectives

« Compute K of highly macroporous karst rock

« Compute K under different hydraulic
gradients (different Re). Expect reduced
apparent K at high Re due to eddy head
dissipation



Introduction

« LBM is a mesoscopic method based on the
scale between molecular dynamics and familiar
continuum approaches

* A particle stream-and-collide perspective with
interparticle forces is adequate for most
simulations

 LBMs handle complex geometries well



Kinetic Theory

Complete set of position (x) and momentum (p)
coordinates for all particles gives dynamical
state of system

Together with classical mechanics, allows
prediction of future states

However, this level of description is not possible

Use a statistical description: focus on the
distribution function of the “state” of molecules

f(x,p,?)



LBM Basics
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Streaming f.(x+e At t+Ar)= f,(x,1)
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Single Relaxation Time BGK (Bhatnagar-
Gross-Krook) Approximation

/. (x +e At f+ 1) = fa(x,t)— [fa (X,t)_ 1o (x,t)]

. Collision (i.e., relaxation towards&uilibrium)
Streamlng ) Collision and streaming steps
2 must be separated if solid
f eq (X ) _ (X) 1 + 3 € a °u + 2 (e a °u ) . i u boundaries present (bounce
a =W a p 2 4 2 back boundary is a separate
C 2 C 2 C collision)

* 7relaxation time (viscosity and diffusion)
>1 lu * ¢ speed on lattice (1 lu /time step)

 w, are 4/9 for the rest particles (a = 0),
*1/9fora=1, 2, 3, 4, and
*1/36 fora=5,6, 7, 8.




Poiseuille flow in a circular pipe
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Poiseluille flow in a rectangular duct
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Papanastasiou, T. C., Georgiou, G. C. , Alexandrou, A. N.,
(2000). Viscous fluid flow. CRC Press, Boca Raton, p.259

For square,a=b

Red-open-symbols=Simulation V-profile, Blue-line=Poiseuille

g = 0.000001 fu/ts?
t=11ts
Height =31 lu

-10

20



Why use LBM in macroporous karst context?
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Why use LBM in macroporous karst context?

 Easyto
Incorporate
complex geometry

 Transition to
higher Reynolds
numbers




Data and Tools

« Karst data scales
—0.0003 to 0.3 m high-resolution CT scans
— 0.002 to 30 m borehole imagery
— 1 to 1000 m cave diver sonic rangefinder data
* Medium simulation required for borehole
and rangefinder data
* LBM integrative tool
— Compute K at multiple scales
— Assess non-Darcy potential and impacts
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EXPLANATION

TRANSMISSIVITY, IN FEET
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[ ] <0000

[ 300,000 10 1,000,000

B - 100

8045 307 15
= | \ |
2700 — \
_/_/_____'-._MH_TlN_QUUhﬂ_,__
| PALM BEACH COUNTY
/' Lake }
1 | Okeechobee
&5 West Palm Beach_ @
’ 1 (surface water)
I o
t|
2|
=
=i [
AN—
E|
E!
= Boca Raton
PALM BEACH COUNTY
’_i BROWARD COUNTY 8
Y/
unrise_
| .
= Dixie and
=t Prr:nspn-z::‘tﬁﬂs]:j
gl
& s B L]
26°00—= Dau[eggﬂtﬂlywmd_
8|~~~ ~"LBROWARDCOUNTY __ — ™ Hi
I MIAMI-DADE CUUNmiami- '.'lai
‘ Northwest—~, Hialeah 5L North
o O 1 Miami
T 3 _1/ Beach
45— ‘ 4-7 m’s Alexander, —
§ i Southwest . -
o ‘ Preston ':E
L r
= &
BZ: L }.:"
S| -
9
0 Homestead . f_:,“* -
e | Florida cm"q 3
™ Ll {::'l
T
I i
§
25"]5’%\1[@ —
AN 1995

EXPLANATION

MUNICIPAL
WITHDRAWALS, IN
MILLION GALLONS

PER DAY
e 00-25

o 26-10.0
® 10.1-250
O 25.1-50.0
@ 50.1-80.0

@ s0.1- 1000

@ 100.1- 1650

0 5 10 15MILES
]
0 5 10 15 KILOMETERS

Renken, R.A., Dixon, J., Koehmstedt, J., Lietz, A.C., Ishman, S., Marella, R.L., Telis, P., Rogers, J., and Memberg, S., 2005,
Impact of Anthropogenic Development on Coastal Ground-Water Hydrology in Southeastern Florida, 1900-2000: Reston, Va.,
U.S. Geological Survey Circular 1275, 77 p.



Geology to model parameters
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Example
Data Set

Burrow porosity in Miami
Limestone barrier bar deposited
during the last interglacial

(maximum unit thickness ~ 1m)

Photo: Mike Wacker/USGS

Data and image prodaced at the High-Resolution X-ray Computed Tomography Facility of the
University of Texas at Austin



8- and 16-bit slices

el

0.271 mm/pixel

« With 0.8 mm slice spacing, 401 slices =
321 mm

Data and image produced at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin



Thresholding (<75/255 —pore)

Data and image produced at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin



Bulk of Sample and Experimental Cube

~22 million cells. Limit set by memory of computer and code.

Data produced at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin



Velocity Magnitude

Data produced at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin



Darcy’s Law

* h head (= p/pg)

q=-KVih » K hydraulic
conductivity (LT")
g e ( flux
q= -k—=Vh » k permeability
H * p density

* U Viscosity

1
— * p pressure
q k ,U Vp e g gravity
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Darcy-Forschheimer Equation

* Darcy: 17

Pa=-V
kq P

* +Non-linear drag term:

§q+aqq=—Vp




Apparent K as a function of hydraulic gradient
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Hydraulic Gradient

» Gradients could be higher locally
« Expect leveling at higher gradient?



Streamlines at different
Reynolds Numbers

Re = 0.31 Re = 152
K=34 m/s K=20m/s

« Streamlines traced forward and backwards from eddy locations and hence
begin and end at different locations




Conclusions

 LBM can measure permeabilities outside
the range routinely accessible to
laboratory measurements

 LBM can assess magnitude of departure
from Darcy flow



