Everglades National Park South Florida Natural Resources Center

Florida Bay Estuarine Habitat Suitability Assessments of Sea-Level Rise

> Leonard Pearlstine, David Hallac, William Perry, Tom Schmidt, Edward Kearns, and Kiren Bahm South Florida Natural Resources Center, Everglades National Park

> > Eric Swain U.S. Geological Survey

South Florida Natural Resources Center

Sea Level Rise Projections

Sea level rise projections range from 3 inches to 28 inches by 2050

Objective

South Florida Natural Resources Center

Couple Everglades hydrology models with habitat suitability models to examine habitat pattern shifts with sea level rise and restoration alternatives

Hydrology Models for Florida Bay

TIME

Coupled Surface Water & Ground Water Model (FTLOADDS)

Major Data Provided:

- Water Depths
- Water Levels
- Salinities
- Velocities

South Florida

Natural Resources

Center

Habitat Models for Florida Bay

- Spotted Seatrout
- Blue Crab
- Turtle Grass
- Anuran Communities

Current Capabilities and Limitations Center

Capabilities

- Model known species niche
- Link temporal and spatial hydrology dynamics
- Estuary topography
- Coastal vegetation distribution patterns

Limitations

- HSI models developed individually
- No synergistic and interspecific interactions
- Sea level rise effects on hydrological and geomorphological properties in the watershed and bay incompletely understood

Spotted Seatrout Habitat Suitability

South Florida Natural Resources Center

Where CPUE = Catch Per Unit Effort

CPUE is modeled as a set of Multiple Regressions

Explanatory Variables:

- Bottom Type
- Water Depth
- Salinity
- Temperature

Blue Crab Habitat Suitability

South Florida Natural Resources Center

Temperature an Calue HSI = Temperature^{0.5} * Salinity^{0.5} C.4 * * ウ ゆ ゆ * Degrees C Larvae 0.8 * * * * * * * Degrees C **Spawning Female** HSI = Geometric Mean for **Spawning Female** Salinity spawning females March - May 12 1 0.0 0.0 0.4 0.4 0.2 **Spawning Female** HSI = Minimum of spawning もくやうやうや and Larvae and larval HSI PPT June - September Larvae HSI = Geometric Mean for Larvae Larvae **October - December** でくそややくも PPT **Spawning Female**

Turtle Grass Habitat Suitability

South Florida Natural Resources Center

HSI = (Light_Availability^{0.25} * Salinity^{0.25} * Temperature^{0.25} * Previous^{0.25})

Anuran Community Habitat Suitability Resources Center

HSI = Land_Cover^{0.33} * Salinity^{0.33} * Hydroperiod^{0.33}

- Oak Toad
- Southern Toad
- Greenhouse Frog
- Squirrel Treefrog
- Eastern Narrowmouth Toad Green Treefrog
- Pig Frog Southern Leopard Frog

Cuban Treefrog

chanca ta

Blue Crab Habitat Suitability

South Florida Natural Resources Center

High :34

Depth (m) 15Mar1995 3 foot rise

Juvenile Spotted Sea Trout Habitat Suitability

Juvenile Spotted Sea Trout Habitat Suitability

Turtle Grass Habitat Suitability

Turtle Grass Habitat Suitability

Anuran Community Habitat Suitability Center

South Florida Natural Resources Center

HydroPeriod 3 Foot Rise 1995

Salinity 1995 3 Foot Rise

What's Next?

Model review and enhancement

•Vegetation succession and substrate subsidence

- Other climate variable impacts
- Species interactions
- Other hydrological models as input

• Examine interaction of hydrologic restoration alternatives

