

Assessing Biomechanical Properties of Mangrove Roots Across a Salinity Gradient in the Florida Coastal Everglades.

Omar Alawneh¹, Edward Castañeda-Moya², Lukas Lamb-Wotton³, <u>Navid Jafari⁴</u>, Brian Harris⁵, Andre Rovai⁶ and Hamed Nasiri⁴

1Louisiana State University, Baton Rouge, LA USA

2Miami-Dade County Division of Environmental Resources Management, Miami, FL USA

3Tulane University, New Orleans, LA USA

4Teaxs A&M University, College Station, TX USA

5U.S. Army Engineer Research and Development Center, Vicksburg, MS USA

6Smithsonian Environmental Research Center, Edgewater, MD, USA

Engineering

April 24, 2025

Introduction and Background

- Mangroves are coastal defenders and ecological engineers
 - Provide shoreline stabilization, storm surge buffering, and habitat.
 - Store large amounts of C in vegetation (above- and belowground) and soils.
 - Plant biomass and production contribute to soil elevation and mangrove resilience relative to SLR.
- Everglades National Park has different species distributed along salinity and nutrient gradients.
 - Largest distribution of mangroves in the US

The Florida Coastal Everglades (FCE)

- Karstic Oligotrophic P-limited system
- Inverse estuary
- P is supplied by the Gulf of Mexico during hurricanes

Landscape Gradients in Resources (nutrients), Regulators (sulfide), and Hydroperiod

- Hydroperiod: Tide-dominated
- P gradient: downstream to upstream limitation upstream (N:P = 105)
- PW Sulfide: Negligible (<0.06 mM)
- PW Salinity: 5-27 ppt

- Permanently or seasonally flooded
- No P gradient: P limitation in all sites (N:P ranges from 70-109)
- High (1.0-2.3 mM)
- 17-20 ppt

АМ

Landscape Mangrove Vegetation Patterns

Taylor River, TS/Ph-6

- Largest mangrove area in the continental US.
- Different mangrove ecotypes at the same latitudinal gradient.
- ENP TOC (vegetation & soil) storage valuation = \$2-3.4 billion (Jerath et al. 2016).

High Recurrence of Hurricanes in South Florida

- 19 hurricanes impacting the Florida Coastal Everglades (FCE) since 1926
- Three Cat 4 storms
- Two major hurricanes in the last 20 years:
 - Wilma Oct 2005
 - Irma Sep 2017

Source: National Hurricane Center

6

- Measure in-situ soil shear strength using a Cone Penetration Test (CPT).
- Evaluate how mangrove root biomass varies across salinity and nutrient gradients.
- Explore relationships among root traits, salinity, soil nutrients, and soil strength.

A M

Study Site: The Florida Coastal Everglades (FCE)

8

Cone Penetration Test

- (PCPT) is a lightweight CPT that can be pushed manually in soft soil.
- The PCPT has been adapted to work in coastal/marine conditions. The most notable modifications are:
 - It is a handheld device pushed by manpower rather than a truck or a rig.
 - It has a 2.5-ton load cell to increase the sensitivity of tip resistance.
 - Fins can be incorporated to better detect the strength contribution of roots.
- The PCPT can obtain tip resistance, sleeve friction, porewater pressures.

Cone Penetration Test

Temporal Variation of Root Biomass

Temporal Variation of Root Size Distribution

(Root Depth 0-45 cm)

Castañeda-Moya et al. (2011) and Castañeda-Moya et al. (in review)

CPT in Shark River Slough

SRS-4

Riverine

CPT in Taylor Slough

TS-6

TS-7

Scrub Mangrove Forests

Spatial Variation of Root Shear Strength

SRS-4

Biomechanical Properties of Shallow Root Zone

Root Biomass with Root Shear Strength

- Mangrove root biomass and shear strength vary significantly across salinity and nutrient gradients in the Florida Coastal Everglades.
- Higher root biomass correlates with increased shear strength, especially in lower salinity zones.
- Cone Penetration Test (PCPT) proved effective in capturing spatial variability of in-situ shear strength in soft mangrove soils.
- Root biomechanical properties are influenced by both environmental conditions (salinity, nutrients).

THANK YOU

GEER

Greater Everglades Ecosystem Restoration

TEXAS A&M UNIVERSITY Engineering

