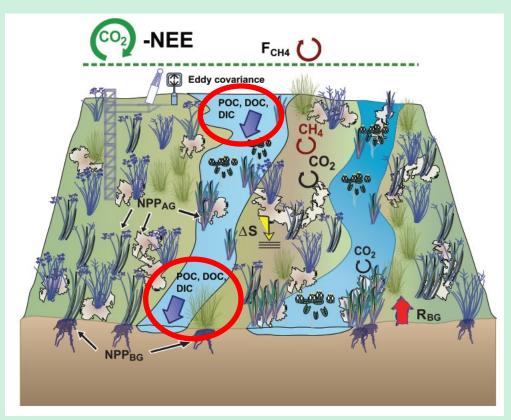

Aquatic Carbon Fluxes from a Marsh Ecosystem in the Florida Everglades

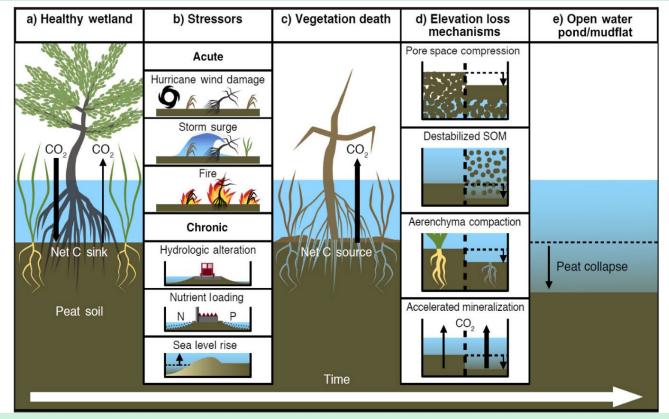
Examining Carbon Release in Response to Pulsed Water Level and Salinity Manipulations


The Net Ecosystem Carbon Balance of Coastal Wetlands

- High rates of primary production, sediment and particle trapping help to develop large carbon sinks in coastal wetlands
- Low levels of oxygen in saturated sediments lead to slowed decomposition and reduced respiration
- NECB: the rate of carbon accumulating in a system (Chapin et al. 2006)

Source: Troxler et al. 2013

The Missing Fluxes

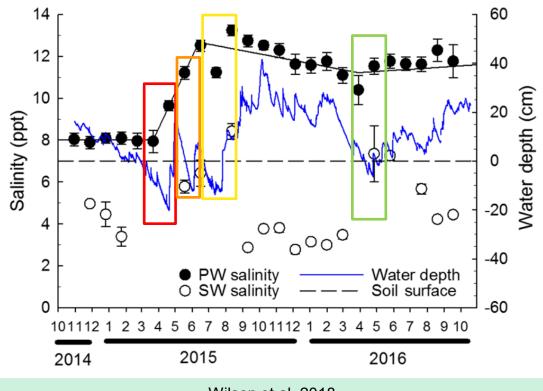


 Aquatic carbon fluxes are often overlooked in the NECB (Webb et al. 2019, Dinsmore et al. 2013).

 Models indicate that aquatic carbon flux might be enhanced by saltwater intrusion, but this has not been validated by field studies (Ishtiaq et al. 2022).

Source: Troxler et al. 2013

Marsh Degradation from Saltwater Intrusion and Peat Collapse



Source: Chambers et al. 2019

Peat pedestal left behind by peat collapse.

Chapter 2: Examining Carbon Release in Response to Pulsed Water Level and Salinity Manipulations

Wilson et al. 2018.

Research questions

- 1. How do recurring dry-down events followed by increases in porewater salinity during rewetting influence carbon (DOC and DIC) release in marsh ecosystems?
- 2. How does DOC and DIC release differ between soils from marshes degraded by saltwater intrusion and intact freshwater marsh?

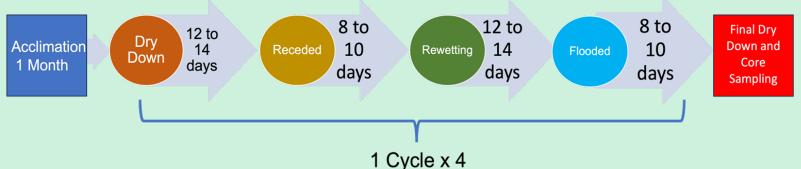
Site Locations and Site Types

Site locations.

Examining Carbon Release in Response to Pulsed Water Level and Salinity Manipulations

Methods: Experimental Design

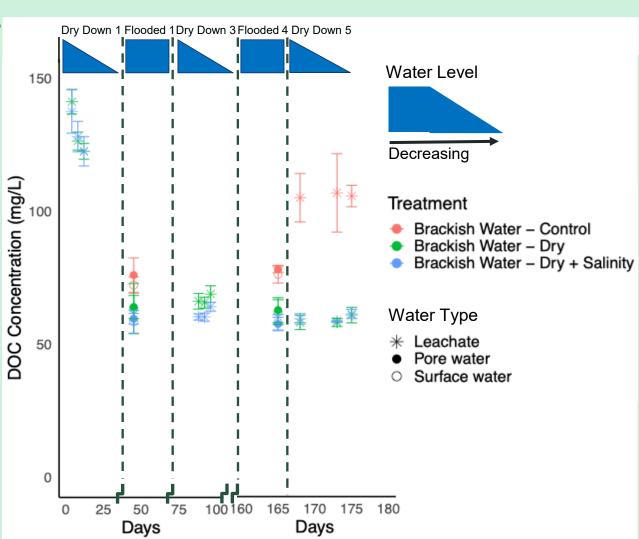
- 12 3-in cores taken to a depth of ~40 cm from both sites (Brackish water and Freshwater) were randomized and sorted into one of three treatments: Control, Dry Down (ambient), Dry Down + Salinity
- Additional 3 cores were taken at each site for analysis of soil bulk density and carbon fraction.
- Surface water, porewater and leachate samples for DIC and DOC analysis.



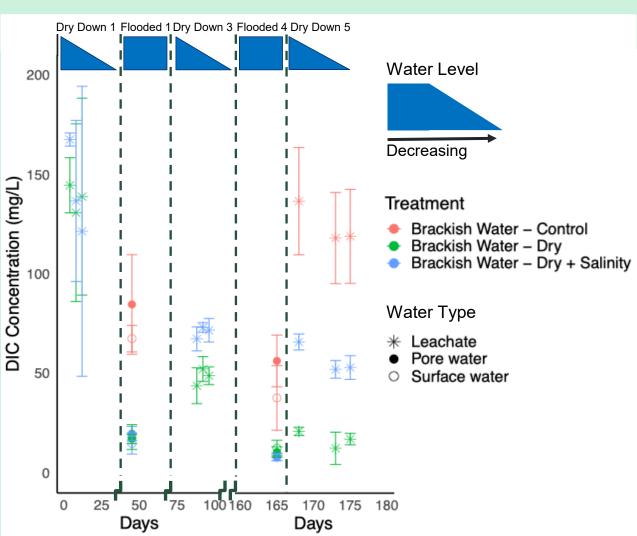
Soil core collection (top), experimental set-up in the lab (bottom).

Examining Carbon Release in Response to Pulsed Water Level and Salinity Manipulations

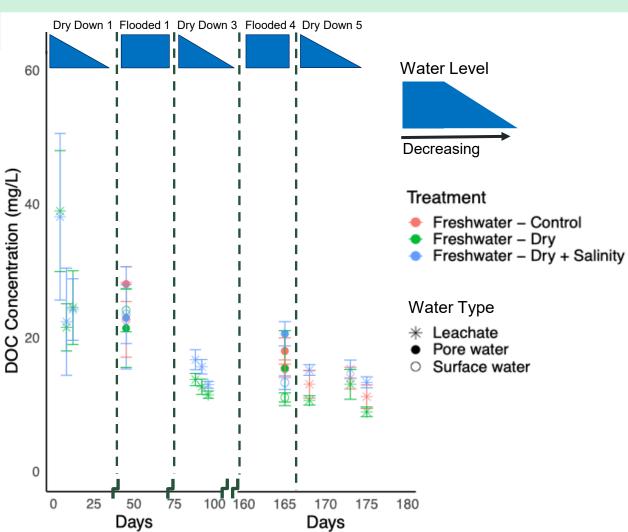
Methods: Experimental Design


- Experiment Timeline

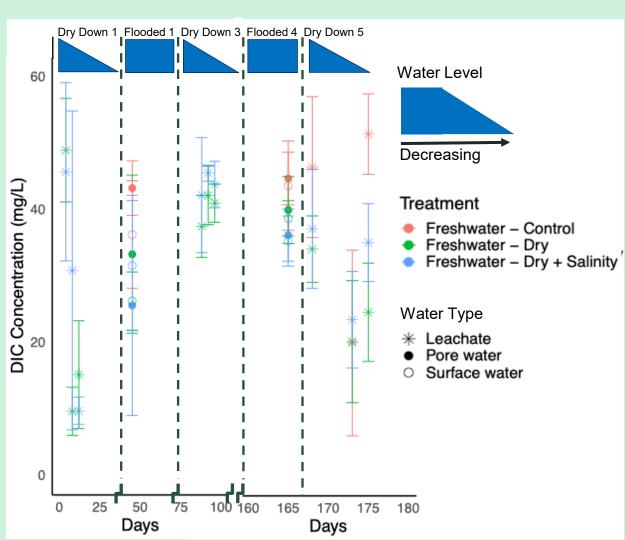
Cycle Number	Brackish Water Dry	Brackish Water Dry + Salinity	Freshwater Dry	Freshwater Dry + Salinity
1	5.4 ppt	18 ppt	0.3 ppt	5 ppt
2	6 ppt	23 ppt	0.3 ppt	10 ppt
3	5.8 ppt	28 ppt	0.2 ppt	15 ppt
4	5.5 ppt	33 ppt	0.2 ppt	20 ppt


Mean DOC over Time Brackish Water

- DOC concentrations in leachate declined over time for experimental treatments (50 – 59% decrease).
- At the end of Dry Down 5 (Days = 176), treatments Dry and Dry + Salinity had a 42% and 42.5% *decrease* in DOC compared to the control (InRR = -0.55, 95% CI [-0.61- -0.49] and InRR = 0.54, 95% CI [-0.59 -0.50], respectively).
- While effect size CI's indicates significant treatment effects on DOC, similar effect sizes suggest the addition of salinity did not impact the treatment effect on DOC.


Mean DIC over Time Brackish Water

- DIC concentrations in leachate, pore water and surface water *declined* over time for experimental treatments (30 – 90% decrease).
- At the end of Dry Down 5 (Days = 176), treatments Dry and Dry + Salinity had an 86.5% and 55.5%
 decrease in DIC compared to the control (InRR = -1.94, 95% CI [-2.19 -1.68] and InRR = -0.81, 95% CI [-1.03 -0.58], respectively).
- Effect size CI's indicates <u>significant</u> treatment effects on DIC.


Mean DOC over Time *Freshwater*

- DOC concentrations in leachate and pore water and surface water *declined* over time for experimental treatments (10 – 72% decrease).
- By the end of Dry Down 5 (Days = 176), treatments Dry and Dry + Salinity had a 20% *decrease* and an 19% *increase* in DOC compared to the control (InRR = -0.22, 95% CI [-4.00 -0.05] and InRR = 0.17, 95% CI [0.08 0.34], respectively).

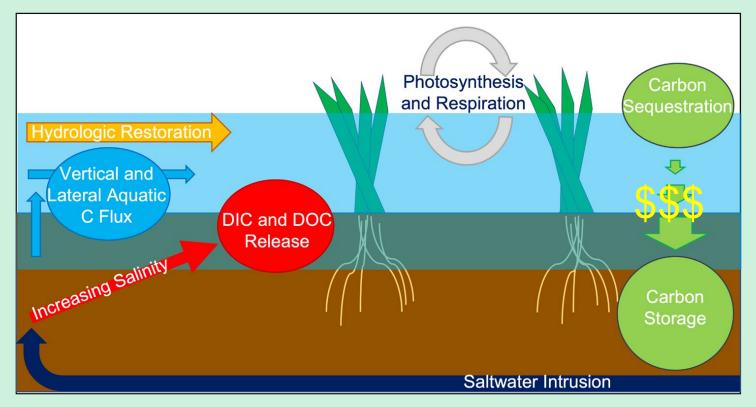
Mean DIC over Time *Freshwater*

- DIC concentrations in leachate declined from the middle of the experiment and onward for experimental treatments (8 – 20% decrease).
- DIC in porewater and surface water *increased* with time (20 – 47% increase).
- By the end of Dry Down 5 (Days = 176), treatments Dry and Dry + Salinity had a 52.13% and 31.76% *decrease* in DIC compared to the control (InRR = -0.74, 95% CI [-1.05 -0.42] and InRR = -0.38, 95% CI [-0.58 -0.18], respectively).

Preliminary Findings

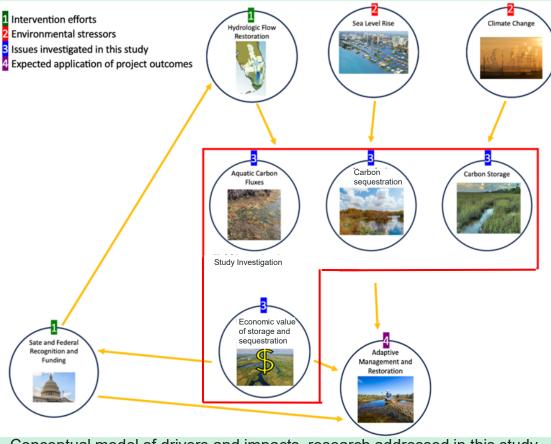
- DIC and DOC concentrations were generally highest in the control treatments for both brackish and freshwater cores, emphasizing the impact of dry down on aquatic carbon losses.
- DIC and DOC release in treatment cores was generally greatest in the leachate of the first dry down and declined over time.
- While dry down caused <u>significant</u> declines in DOC and DIC in brackish water cores, pulse events of increasing salinity do not appear to appear to additionally impact DOC but may boost DIC release in brackish water cores.
- Dry down generally coincides with declines in DOC and DIC over time in the leachate of freshwater cores; however, added salinity may boost DOC and DIC release, and some pore water and surface water concentrations increased in DIC over time.

Conclusions and next steps!


• In our lab-based experiment, dry down is a key driver of aquatic carbon release in wetland ecosystems.

 In brackish water marsh systems, salinity has a limited impact on DOC release but may enhance DIC release.

• In freshwater marsh systems, salinity may enhance DOC and DIC release. Periods of higher water level coincide with greater DIC.


• Analysis is still on-going! To be continued...

Dissertation Research Focus

Carbon pools, fluxes and carbon dynamics explored in this study.

Conceptual Model

Conceptual model of drivers and impacts, research addressed in this study and potential project outcomes.

Acknowledgements

- My advisor Dr. Tiffany Troxler, Dr. Leonard Scinto, Dr. Rene Price, Dr. John Kominoski and Dr. Mahadev Bhat
- Field and lab assistance from Dr. Lukas Lamb-Wotton, Caitlin Reisa, Danny LaRochelle, Dr. Dishane Hewavithana, Emily Standen, Brian Heidbreder, Julia Zeidler, Dr. Jenny Ding, Isel Rodriguez, Brandon Leon
- Wetland Ecosystems Research Lab at FIU
- CaChe Lab at FIU
- The Everglades Foundation
- The Garden Club of America
- Department of Earth and Environment at FIU
- Institute of the Environment at FIU

