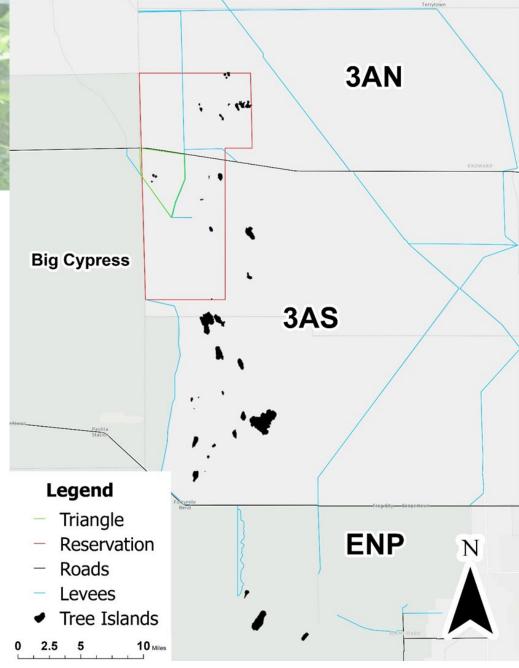
ECOLOGICAL DRIVERS OF MAMMALIAN TREE ISLAND USE

April 24, 2025

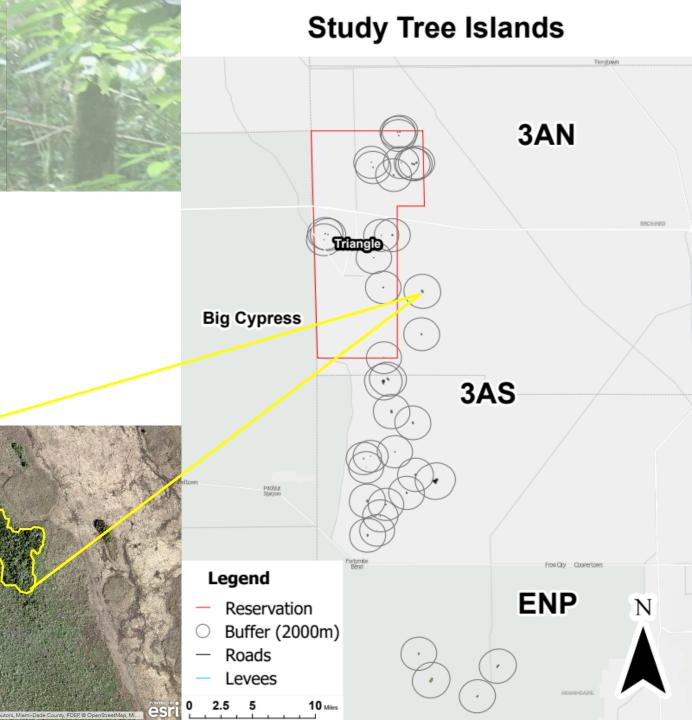

Marcel Bozas, PhD Nicholas Gonzalez Greg Evans Alex Crow

Tree Islands as Habitat

- Wildlife relies heavily on tree island habitat • Forage, dry refugia, forested cover, breeding/nesting/rearing sites
- Mammals especially reliant because of terrestrial affinity
- Quality mediated by tree island characteristics (e.g., size, elevation, plants)
- 1. Diversity
- 2. Composition
- 3. Distributions (Zarnetske et al., 2017; Hamer et al., 2021; Ferreira Neto et al., 2021)
- Limited mammal research in Everglades O Multidecadal decline

- Site Selection
- Areas of interest (distinct hydrologically)
 - 1. 3AN (10 TIs)
 - 2. TRI (3 TIs)
 - 3. 3AS (24 TIs)
 - 4. ENP (3 TIs)
 - 34 islands randomly along depth transect
 TRI and ENP added to ensure full range of combinations

^{*} Polygons are 5x the scale of their true areal extent


Camera Trapping

- Deployed using consistent protocol (i.e., height, angle, settings)
- Cams on "head" of TIs
 - More diverse than downstream areas (All species use head, not subset)
 Last place to flood. During high-water, wildlife congregate here
 Methodological consistency. 'Head' is not 'habitat'
- Cameras positioned to optimize data collection
- Hourly occurrences → Relative abundance index (RAI)
 RAI spp1 =(Number of occurrences) / (Number of trap days)

- Landscape Characteristics
 - ArcGIS Pro to digitize heads
 - Measure head area
 - Spatial Rings
 100/250/500/1000/2000m
 # of Neighbors
 Area of Neighbors

Max (single highest point)

Elev./Hydrology

Methods

- Head elevations surveyed (post-Eta in Nov. 20)
 - Transect -10m (marsh), through head (not tail)
 - \circ Measured 3x every 5 10 m; Hammock vs Bayhead/swamp, respectively

Mean

- 3AS Triangle 3AN
- ENP (SOFTEL)

- (EDEN water level) (Survey Depth) = (Plot Elevation)
 Derive tree island & marsh (rings) hydrologic variables
 - Max. elev., Relative water, Hydroperiod, etc.

Vegetation

• Same transect as the elevation survey

4x4 m square plot

- Ground cover/Vines/Saplings/Trees
 - o DBH
 - $\circ\,$ Crown cover
 - $\circ\,$ Canopy height
 - \circ Canopy structure

2x2 m subplot

Herbs/Vines
 Stem density
 % Crown cover

Table 2. Stratification and defining criteria of plants in vegetation surveys.

Strata	Criteria		
Herbs	Plants, including vines and seedlings, with a maximum height <1 m.		
Shrubs	Plants, excluding vines, with a maximum height >1 m; woody species must have a DBH <1 cm.		
Vines	Vines with a maximum height >1 m.		
Saplings Trees	Woody species with a maximum height >1 m and DBH of 1-5 cm. Woody species with a maximum height >1 m and DBH ≥5 cm.		
(2.1.2.2)			
10-6-20			

(Sah, 2004)

Species Diversity

Coverage

• Occurrence data used to calculate **coverage** (How completely sample represents population)

Mean **coverage** = 99% (min. = 86%)

• Standardize to **asymptotic estimate** of **coverage** (100%) • Minimal extrapolation (only 6 increased) (Roswell et al., 2021)

$$C = 1 - \frac{f_1}{n} \left[\frac{(n-1)f_1}{(n-1)f_1 + 2f_2} \right]$$

Asymptotic Estimate

	<u>Richness</u>	<u>Hill-Shannon</u>
Gamma	12	3.2
Alpha	1 – 12	1-6
Mean alpha	5	2.4
Beta	2.4	1.3

Common Name		Scientific Name	
Black bear		Ursus americanus floridanus	
Bobcat		Lynx rufus	
Coyote		Canis latrans	
Eastern gray squirrel		Sciurus carolinensis	
Feral hog		Sus scrofa	
Florida panther		Felis concolor coryi	
Marsh rabbit		Sylvilagus palustris	
Raccoon		Procyon lotor	
Riverotter		Lutra canadensis	
Virginia opossum		Dideplphis virginiana	
Whitetail deer		Odocoileus virginianus seminolus	
Rat	Cotton mouse	Peromyscus gossypinus	
	Marsh rice rat	Oryzomys palustris	
	Hispid cotton rat	Sigmodon hispidus	
	Norway rat	Rattus norvegicus	
	Roof rat	Rattus rattus	

Species Diversity

Generalized Linear Mixed Models (GLMMs)

- GLMMs modelled variables as fixed effects
 - $\,\circ\,\,\underline{\text{Site}}$ as random effect
 - AIC identified parsimonious models

Ave. marsh depth best explained

Species Richness ($R^2_{marg} = 0.34$)Hill-Shannon($R^2_{marg} = 0.49$)

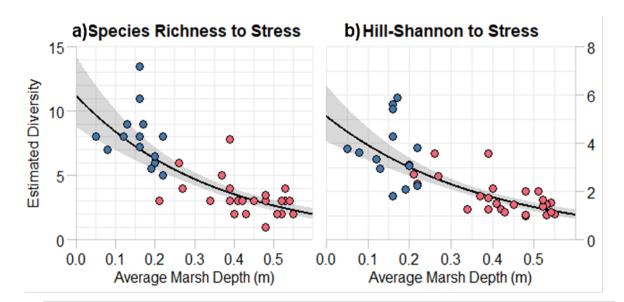


Figure 5. GLMMs of the effect of matrix-derived hydrologic stress on tree island site's estimated alpha species diversity. Species richness (a) and Hill-Shannon diversity (b). Cluster 1 is blue; Cluster 2 is pink. Gray band depicts the 95% confidence interval.

Metacommunity

EMS Framework

Reciprocal Averaging ordination of RAI
 Coherence = +; Turnover = ; Clumping = +

STARI

Modified from Eden et al. (2022)

Hyperdisperse

Nested

Nested

Random

Evenly Snac

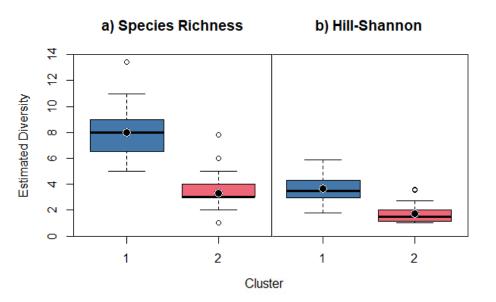


Figure 6. Boxplots of clusters' estimated alpha species diversities. Species richness (a) and Hill-Shannon diversity (b) were estimated from coverage-based asymptotes.

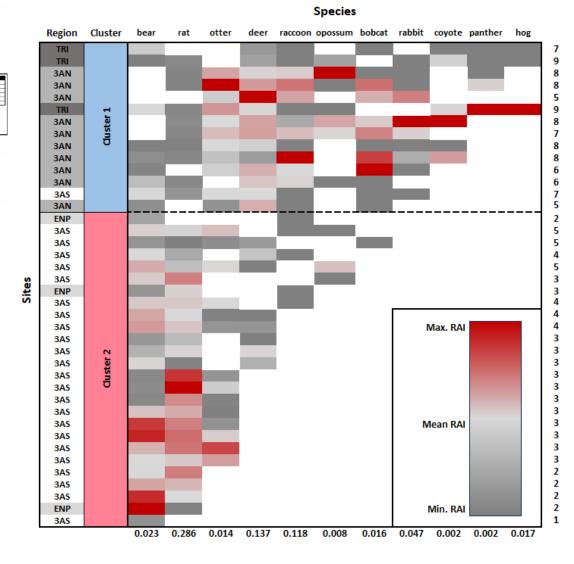


Figure 3. Ordinated sites-species matrix of all tree island sites and mammals detected during camera trapping. Sites and species' relative abundances (RAI) were organized according to their reciprocal averaging Axis-1 score. The right y-axis displays row counts (i.e., number of species at each site) and the bottom x-axis displays column means (i.e., the mean RAI for each species across).

Triplot db-RDA: Mammals ~ Environment (Scaling 2)

Metacommunity

Distance-Based Redundancy Analysis

(1) ordinate BC dissimilarity (2) Multiple regression

- <u>Species</u> in Euclidean space (Angle = Correlation) (spp. ~ spp.) (var. ~ var.) (spp. ~ var.)
- Parsimonious dbRDA reduced to 4 variables

 Explained 44% total variation

DEEP = (high-water depth) = 23% of var. (x6)
MRSH = (marsh amplitude)
AREA = (log area of head)

✤<u>NBR%</u> = (area of neighbors in 1000 m)

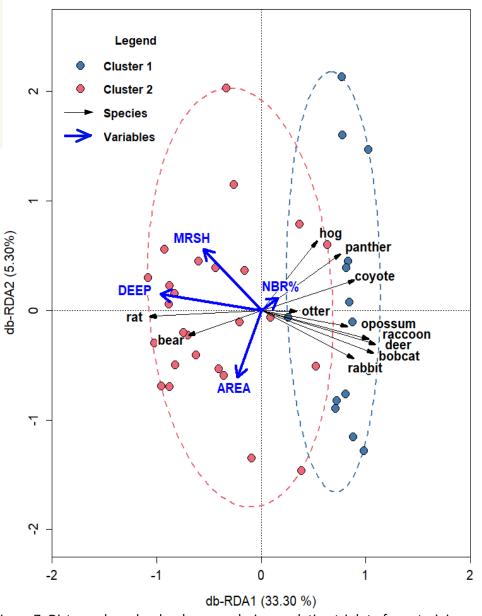
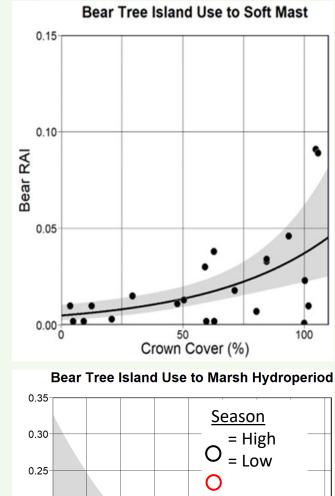
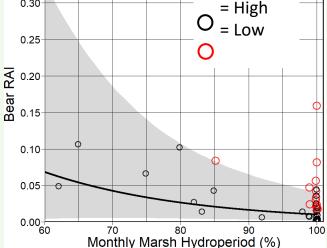


Figure 7. Distance-based redundancy analysis correlation triplot of constraining variables, Hellinger transformed species, and sites scores fitted as orthogonal linear combinations of constraining variables (*i.e.*, linear combination (lc) scores).

Distance-Based Redundancy Analysis


• Multiple regions & species omits temporal & blurs species-specific trends

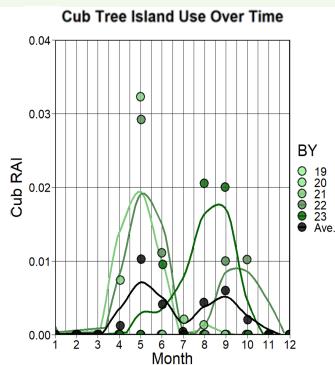

Ex. Bears in WCA 3A

- Bears on all 24 TIs
 - $\,\circ\,$ RAI +10x higher on most used than least used
 - $\,\circ\,$ Availability of fruit mast is vital
 - Pond apple, cocoplum, strangler fig
 - \circ +10% hydroperiod \rightarrow -50% likelihood of use

Distance-Based Redundancy Analysis

 Multiple regions & species omits temporal & blurs species-specific trends

Ex. Bears in WCA 3A


- Bears on all 24 TIs
 - $\,\circ\,$ RAI +10x higher on most used TI
 - $\,\circ\,$ Availability of fruit mast is vital
 - Pond apple, cocoplum, strangler fig
 - \circ +10% hydroperiod \rightarrow -50% likelihood of use

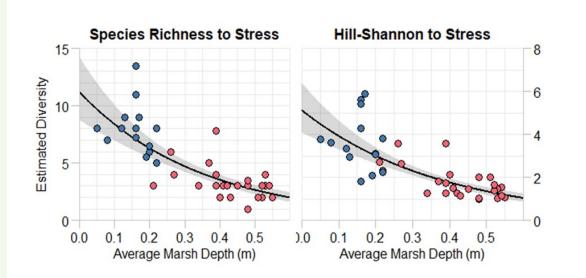
• Cubs on 9 TIs

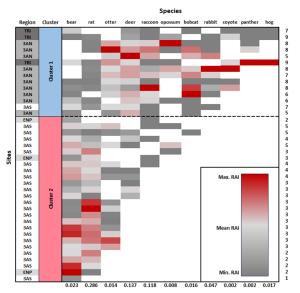

- $\,\circ\,$ 8x more likely on TI with $\underline{hammock}$
- $\,\circ\,$ Born in February, emerge April, disperse June
- \circ Need drydown (<4" = 0.1m) for recruitment
 - Very sensitive to pre- & post-denning conditions

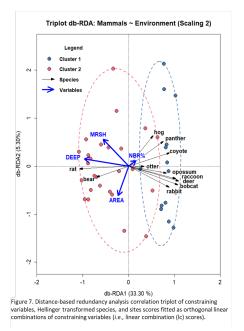
(Elowe & Dodge, 1989; Garrison, 2004)

Mean Marsh Depth During Early Cub Season

- Depth (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u>
 Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks

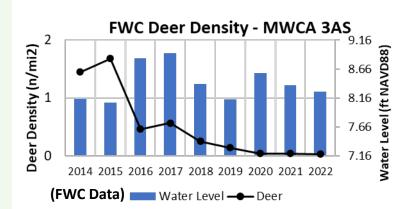

 Flooding hammocks → loss of forage, habitat, reproductive failure, mortality
 Marsh drydowns → May June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?





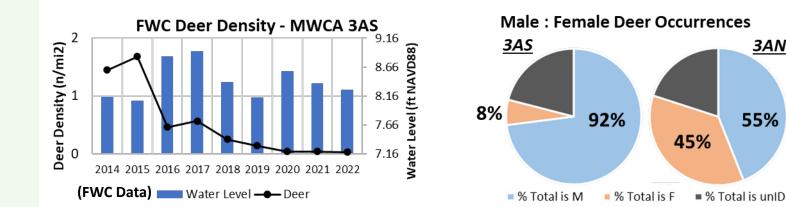
- Depth (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u>
 Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks

 Flooding hammocks → loss of forage, habitat, reproductive failure, mortality
 Marsh drydowns → May June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?
 - a) Metacommunity strong environmental filter; structured by water-depth



- Depth (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u>
 Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks

 Flooding hammocks → loss of forage, habitat, reproductive failure, mortality
 Marsh drydowns → May June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?
 - a) Metacommunity strong environmental filter; structured by water-depth
 - b) Interannual declines coincide with extreme high-water and/or prolonged depths

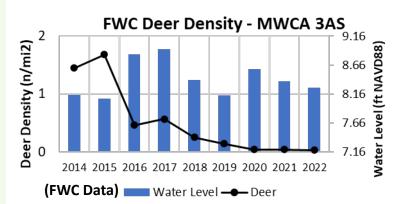

3AN

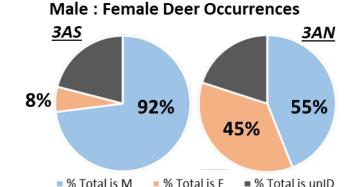
55%

45%

- **Depth** (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u> • Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks \circ Flooding hammocks \rightarrow loss of forage, habitat, reproductive failure, mortality \circ Marsh drydowns \rightarrow May – June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?
 - Metacommunity strong environmental filter; structured by water-depth a)
 - Interannual declines coincide with extreme high-water and/or prolonged depths b)
 - Mass mortality (~50%) during high-water; demographics c)

(MacDonald-Beyers, & Labisky, 2005) (Cherry et al., 2019)





- Depth (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u>
 Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks

 Flooding hammocks → loss of forage, habitat, reproductive failure, mortality
 Marsh drydowns → May June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?
 - a) Metacommunity strong environmental filter; structured by water-depth
 - b) Interannual declines coincide with extreme high-water and/or prolonged depths
 - c) Mass mortality (~50%) during high-water; demographics
 - d) Diversity & occurrences higher where drier

(MacDonald-Beyers, & Labisky, 2005) (Cherry et al., 2019)

RAI of 3AS to	3AN	TRI
 Coyote 	\checkmark	\checkmark
 Panther 	✓	\checkmark
 Bobcat 	27x	11x
 Deer 	13x	15x
 Opossum 	2x	7x
 Marsh rabbit 	76x	2x

- Depth (wet-season) drive <u>diversity</u>, <u>distributions</u>, <u>habitat use</u>, <u>abundance</u>
 Patch <u>size</u> and <u>connectivity</u> important but secondary to hydrology
- Multicollinear = islands with >0.4 m are same with regular, prolonged flooding of hammocks

 Flooding hammocks → loss of forage, habitat, reproductive failure, mortality
 Marsh drydowns → May June timing to facilitate dispersal & recruitment
- Is multidecadal decline of mammals MOSTLY due to flooding? pythons?
 Multiple lines of evidence suggest high-water may be leading driver, at least regionally (3AS)
 - * Need direct species interaction data (e.g., python predation or density)
 - * Need species-specific studies to refine understandings (e.g., raccoons sensitive to 500m scale)
- **Restore** Quantity suitable habitat (TI Area and Number) Quality (Forage + Hydrologic stress)

References

- Cherry, M. J., D. A. Crawford, K. N. Engebretsen, H. N. Abernathy-Conners, W. H. Ellsworth, L. L. Stiffler, F. Bled, E. P. Garrison, K.V. Miller, R. J. Warren, L. M. Conner, and R. B. Chandler. 2019. South Florida Deer Study: Final Report to the Florida Fish and Wildlife Conservation Commission. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA.
- Eden, R., Manica, A., & Mitchell, E. G. (2022). Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period. PLoS Biology, 20(5), e3001289.
- Elowe, K. D., & Dodge, W. E. (1989). Factors affecting black bear reproductive success and cub survival. The Journal of Wildlife Management, 962-968.
- Ferreira Neto, G. D. S., Baccaro, F. B., Spironello, W. R., Benchimol, M., Fleischer, K., Quesada, C. A., Goncalves, A. L.S., Pequeno, P. A. L., & Barnett, A. P. A. (2021). Soil fertility and anthropogenic disturbances drive mammal species richness and assemblage composition on tropical fluvial islands. Austral Ecology, 46(5), 792-801.
- Garrison, E. P. (2004). Reproductive ecology, cub survival and denning ecology of Florida black bears (Doctoral dissertation, University of Florida).
- Hamer, A. J., Schmera, D., & Mahony, M. J. (2021). Multi-species occupancy modeling provides novel insights into amphibian metacommunity structure and wetland restoration. Ecological Applications, 31(4), e2293.
- MacDonald-Beyers, K., & Labisky, R. F. (2005). Influence of flood waters on survival, reproduction, and habitat use of white-tailed deer in the Florida Everglades. Wetlands, 25(3), 659.

Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321-338.

- Sah, J. P. (2004). Vegetation structure and composition in relation to the hydrological and soil environments in tree islands of Shark Slough. Tree islands in the Shark Slough landscape: interactions of vegetation, hydrology, and soils. Final Report to Everglades National Park on Study EVER, 75, 85-114.
- Zarnetske, P. L., Baiser, B., Strecker, A., Record, S., Belmaker, J., & Tuanmu, M. N. (2017). The interplay between landscape structure and biotic interactions. Current Landscape Ecology Reports, 2(1), 12-29.