Investigating Deep Learning Models for Water Level Prediction in the Everglades National Park

Rahuul Rangaraj^{1*}, Jimeng Shi^{1*}, Azam Shirali¹, Rajendra Paudel², Yanzhao Wu¹, Giri Narasimhan¹

¹Florida International University ²National Park Service ^{*}Equal Contribution

Agenda

- 1. Introduction
- 2. Study Domain & Problem Description
- **3.** Deep Learning Models
- 4. Methodology & Evaluation
- 5. Results
- 6. Conclusion & Future Work

Everglades Ecosystem

- Essential Subtropical Wetland Ecosystem.
- Water-level forecasting is crucial for ecosystem management and restoration activities.
- Existing methods struggle, especially during **extreme events**.

Figure 1: Major water flow paths in Everglades National Park.

4

Study Domain & Problem Description

Task:

- Predict water levels at target stations
- Considered Inputs: Rainfall, PET(Potential Evapotranspiration), Gate Flow, Previous Water Levels

Figure 2: Study domain and selected measuring stations (highlighted).

17 Deep Learning Models Examined

- 2 Linear-based models
 - Nlinear¹, Dlinear²
- 4 MLP-based models
 - NBEATS³, TimeMixer⁴, TSMixer⁵, TSMixerx⁶
- 3 Transformer-based models
 - Informer⁷, PatchTST⁸, iTransformer⁹
- 2 KAN-based models
 - KAN¹⁰, RMok¹¹
- 1 LLM-based model
 - TimeLLM¹²
- 5 Time Series **Foundation** models
 - TimeGPT¹³, TimesFM¹⁴, Timer¹⁵, Moirai¹⁶, Chronos¹⁷

	1.	Zeng et al., Are transformers effective for time series forecasting?
	2.	Zeng et al., Are transformers effective for time series forecasting?
		AAAI'23.
	3.	Oreshkin et al., N-beats: Neural basis expansion analysis for
		interpretable time series forecasting, ICLR'20.
	4.	Wang et al., Timemixer: Decomposable multiscale mixing for time series forecasting, ICLR'24.
rx ⁶	5.	Chen et al., Tsmixer: An all-mlp architecture for time series forecasting, TMLR'23.
	6.	Chen et al., Tsmixer: An all-mlp architecture for time series forecasting, TMLR'23.
	7.	Zhou et al., Informer: Beyond efficient transformer for long sequence time-series forecasting, AAAI'21
	8.	Nie et al., A time series is worth 64 words: Long-term forecasting with transformers, ICLR'22.
	9.	Liu et al., itransformer: Inverted transformers are effective for time series forecasting, ICLR'24
	10.	Liu et al., Kan: Kolmogorov arnold networks, ICLR'25
	11.	Han et al., Kan4tsf: Are kan and kan based models effective for time
	10	series forecasting? arXiv 24.
	12.	language models. ICLR'24
	13.	Garza and Mergenthaler, Timegpt-1, arXiv'23
	14.	Das et al., A decoder-only foundation model for time-series forecasting,
		ICML'24
	15.	Liu et al., Timer: Transformers for time series analysis at scale, <i>ICML'24</i> .
	16.	Woo et al., Unified training of universal time series forecasting
	17.	Ansari et al., Chronos:Learning the language of time series. TMLR'24.

WCA-3

WCA3A

Experimental Settings

Evaluation Metrics

• MAE (Mean Absolute Error):

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |yi - \hat{y}_i|$$

• **RMSE** (Root Mean Squared Error):

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

Overall Performance

TimeLLM

MAE: Mean Absolute Error

Task-specific Models	Overall (MAE)	Foundation Models	Overall (MAE)	
NLinear	0.185	TimesFM	0.342	
DLinear	0.392	TimeGPT	0.238	
NBEATS	0.176	Timer	0.385	
TimeMixer	0.312	Moirai	0.364	
TSMixer	0.186	<mark>Chronos</mark>	<mark>0.088</mark>	
TSMixerx	0.358			
Informer	0.478			
PatchTST	0.193	Ch	nronos surpasses all	
iTransformer	0.198	prediction period as well!		
KAN	KAN 0.214			
RMok	0.191			

0.242

SEDI Metric Analysis

- To interpret the results:
 - A higher SEDI value (closer to 1) indicates model performs well in identifying extreme events correctly.
 - A lower SEDI value (closer to 0) suggests model struggles with correctly identifying extreme events.

SEDI Metric Analysis

- To interpret results:
 - Higher SEDI value (closer to 1) the model performs well in identifying extreme events.
 - Lower SEDI value (closer to 0) the model struggles to identify extreme events.

Performance for Extreme Values

Task-specific Models	Overall (MAE)	
NLinear	0.185	
DLinear	0.392	
NBEATS	0.176	
TimeMixer	0.312	
TSMixer	0.186	
TSMixerx	0.358	\subset
Informer	0.478	
PatchTST	0.193	
iTransformer	0.198	
KAN	0.214	
RMok	0.191	
TimeLLM	0.242	

Foundation Models	Overall (MAE)					
TimesFM	0.342					
TimeGPT	0.238					
Timer	0.385					
Moirai	0.364					
<mark>Chronos</mark>	<mark>0.088</mark>					
	Chronos	excels at				
	identifyin	g extreme values				
$\Sigma(\hat{y} < y_{low}^p \& y < y_{low}^p) + \Sigma(\hat{y} > y_{up}^p \& y > y_u^p)$						
$\Sigma(y < y_{low}^p) + \Sigma(y > y_{up}^p)$						

Extreme Value Predictions

Accuracy vs Efficiency vs Model Size

Performance vs Input Length

ability to generate predictions for inputs of varying lengths without being retrained.

Differs from task-specific models, requires retraining, when input length changes

MAE values drop as the input length increases from 25 to 100 days

Conclusion

- For time series foundation models,
 - Chronos is the best-performing model
 - Unique feature: without retraining for different input lengths
 - Optimal input length for 28-day forecast identified
- For task-specific models,
 - Perform relatively poor
 - Require retraining
- For extreme event prediction,
 - Both model types struggle with extreme event prediction

Future Work & Research Directions

- Retrieval-augmented time series forecasting
 - By retrieving similar past data, the model can use additional context to handle anomalies or trends more accurately
 - **Expected Outcome:** Improved performance on rare or complex events
- Leveraging ensemble methods
- Explainability
 - To understand why a model predicts certain water levels
 - Expected Outcome: Greater trust and adoption to see transparent reasoning behind the forecasts

Acknowledgements

- Dr. Giri Narasimhan Research Mentor
- Dr. Yanzhao Wu Faculty Advisor & Project Guide
- Dr. Rajendra Paudel National Park Service
- Jimeng Shi, Azam Shirali Research Collaborators
- National Park Service & DBHYDRO Data Providers
- Florida International University (FIU)

THANK YOU!

Happy to take your questions!