Statistical and state space methods unravel marsh stage response to rainfall and water management

GEER2025

Rajendra Paudel, Joseph Park, Erik Stabenau, Delia Carpenter, Melodie Naja and George Sugihara

SCRIPPS INSTITUTION OF OCEANOGRAPHY

Sugihara Lab Quantitative Ecology and Data-Driven Theory

How does one disentangle influences of rainfall and water management in the hydrologic response of the Everglades?

Have water level conditions in the Everglades changed or entered new state regimes as a result of management plans?

Data Driven Analysis

State space

Model free Inference

State space techniques are predicated on identifying an appropriate dimension of the the state space from which predictions and inferences can be made.

Rain

Long term analysis finds no trends in rainfall

Southeast Florida Regional Climate Change Compact (2020). Southeast Florida Climate Indicators: 2020 Update

Mean of yearly rain during water management plan periods, and differences between IOP : COP IFT : COP.

Station	IOP	ERTP	IFT	COP	$\Delta R_{IOP:COP}$	$\Delta R_{\rm IFT:COP}$
S-12D	48.6	52.2	54.0	55.9	7.3	1.9
NP-201	55.4	41.4	51.6	52.5	-2.9	0.9
NP-205	52.4	42.0	43.9	55.6	3.2	11.7
P33	56.9	47.6	54.8	55.6	-1.3	0.8
TSB	55.0	61.0	47.8	61.7	6.7	13.8
R-127	50.8	56.6	50.6	57.3	6.5	6.7

ISOP: Interim Structural Operational Plan

IOP: Interim Operational Plan

ERTP: Everglades Restoration Transition Plan

IFT: Incremental Field Tests

COP: Combined Operational Plan

Changes in Minimum and Maximum Stage

Probability that IOP+ERTP yearly water level maxima S_{IOPM} are above the mean COP yearly water level maxima S_{COPM}

Station	$P(S_{\rm IOP_M} > \overline{S_{\rm COP_M}})$
NP-205	0.02378
NP-201	0.00034
NESRS1	0.00000
NESRS2	0.00000
$S334_H$	0.00000
G620	0.00421
P33	0.00000
TSB	0.00290
R-127	0.00034

Rainfall as a Driver of Stage

SMap: Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688) : 477-495

- Subterranean stage produces larger changes in stage from rain
- The stage dependence reflects local hydrogeological conditions
- Stage-dependence of $\partial S/\partial R$ has not changed since 2000
- The component (fraction) of stage response attributed to rain has not changed from IFT to COP even though water levels and rainfall have increased, and management infrastructure and operations have changed.

Emergency Deviation to 2020 Combined Operational Plan Water Control Plan

2023 to 2024 Planned Temporary Deviation to Lower Water Levels in Water Conservation Area 3A

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, SOUTH ATLANTIC DIVISION 60 FORSYTH STREET, SW ROOM 10M15 ATLANTA, GA 30303-8801

FINDING OF NO SIGNIFICANT IMPACT 2020 EMERGENCY DEVIATION TO PROVIDE TEMPORARY RELIEF TO TERRESTRIAL WILDLIFE DUE TO HIGH WATER LEVELS IN WATER CONSERVATION AREA 3 Broward and Miami-Dade Counties, Florida

The U.S. Army Corps of Engineers, Jacksonville District (Corps) has conducted an environmental analysis, in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, on an emergency deviation to the 2020 Water Control Plan for the Water Conservation Areas (WCAs), Everglades National Park (ENP) and ENP to South Dade Conveyance System (SDCS), hereafter referred to as the 2020 Combined Operational Plan (COP) Water Control Plan. The Central and Southern (C&SF) Flood Control Project is authorized by Section 203 of the Flood Control Act of 1948, Public Law (PL) 80-858, and modified by Section 203 of the Flood Control Act of 1968, PL 90-483. The Environmental Assessment (EA) dated November 2020, addresses an emergency deviation from the 2020 COP Water Control Plan to provide relief of high water levels in WCA 3A in Broward and Miami-Dade counties, Florida.

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, JACKSONVILLE DISTRICT 701 SAN MARCO BOULEVARD JACKSONVILLE, FLORIDA 32207-8175

30 October 2023

Planning and Policy Division Environmental Branch

To Whom it May Concern,

The U.S. Army Corps of Engineers, Jacksonville District (Corps) has prepared a National Environmental Policy Act (NEPA) EA and proposed Finding of No Significant Impact (FONSI) for the planned, temporary deviation from the 2020 Combined Operational Plan. The proposed planned, temporary deviation is being pursued to address the current water level concerns in WCA-3A and potential El Niño conditions in early 2024.

Observations

Deviation 2020-10-14 : 2021-01-30 NP-205 Rain (in) 0 1 2 3 4 2020-10-15 : 2021-01-31 2023-11-05 : 2024-03-30 NP-205 Rain (in) 1 2 3 4 0 0 S12A Flow (cfs) (0 500 (1500) (1500) Feb Nov Dec Jan Feb Mar Dec Apr Jan S12A Flow (cfs) 500 1500 0 0 Nov Feb Dec Feb Mar Dec Jan Jan Nov Apr NP-205 NGVD29 (ft) 6.8 7.2 7.6 NP-205 NGVD29 (ft) 6.8 7.2 7.6 Jan Dec Jan Feb Nov Dec Mar Apr Feb Nov

Deviation 2023-11-04 : 2024-03-29

Three component dynamic model of previous days' rain (R) and stage (S) measured at NP-205, flow (F) measured at S12A + S12B.

 $S(t) = C_0(t) + \alpha(t) R(t-1) + \beta(t) F(t-1) + \gamma(t) S(t-1)$

Components contributing to NP-205 stage

Dry Season: Rain dominates short time scale, Flow dominates long time scale

Ratio of components of NP-205 rain to S12A+B flow over the deviation: 1.24 / 12.74 = 0.097Rain contributed roughly 10% of what flow contributed to stage changes at NP-205. Ratio of components of NP-205 rain to S12A+B flow over the deviation: 1.32 / 6.94 = 0.19 Rain contributed roughly 20% of what flow contributed to stage changes at NP-205.

Long Term Components contributing to NP-205 stage

Plan	Date	Σ Rain	Σ Flow	R/F
IOP	2000 : 2011	101.9	23.3	4.4
ERTP	2012 : 2015	27.4	6.7	4.1
IFT	2016-01-01 2020-08-31	38.3	10	3.8
COP	2020-09-01 2025-02-15	28.5	7.9	3.6

On long time scales rain dominates overall changes in stage with a decreasing ratio in relation to flow from IOP to COP.

2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07 2024-01 2024-07 2025-01

Have water level conditions in the Everglades changed or entered new state regimes as a result of management plans?

Statistical and state space analysis suggest that in relation to the historical record starting in 1990 water levels during the Combined Operational Plan have entered a new state of generally higher stage.

How does one disentangle influences of rainfall and water management in the hydrologic response of the Everglades with data-driven methods?

State space dynamic models provide time-dependent coefficients (derivatives) relating change in stage to changes in rain, flow or other variables. Projecting components of change in stage due to rain allows quantification of component contributions.

Time scale and state are important

 \succ On short time scales in dry season rain can dominate flow response

- \succ Dry season when flow is significant: flow can dominate
- \succ Over multiyear time scales rain stage response 3-4 times of flow
- \succ From IOP to COP it appears flow impact is increasing.

Supplementary Information: Trends in stage

Probability that mean IOP+ERTP water level trend values, T_{IE} , exceed the COP yearly water level trend mean value, T_{COP}

Station	$\overline{\mathrm{T}_{\mathrm{IE}}}$	$\overline{T_{\rm COP}}$	$P(T_{IOP} > \overline{T_{COP}})$
NE1	6.587	7.599	0.00000
NP-201	7.327	8.074	0.00000
NP-205	5.945	6.163	0.08059
G620	6.293	6.918	0.00000
P33	6.283	6.920	0.00000
NE2	6.336	7.520	0.00000
TSB	3.302	4.187	0.00000
R-127	2.275	2.956	0.00000

Supplementary Information: Model Comparison

Linear			
	Model	Rain	Flow
2020-11	-07	0.03520	0.14559
2020-11	-08	0.07792	0.15283
2020-11	-09	0.16410	0.11134
2020-11	-10	0.12915	-0.09703
		$\Sigma =$	0.719 ft
Nonlinear			

.

1

	al	
Model	Rain	Flow
2020-11-07	0.02611	0.04638
2020-11-08	0.06774	0.04683
2020-11-09	0.11714	0.05364
2020-11-10	0.13407	0.07286
	$\Sigma = 0.$	565 ft

Supplementary Information: Model Comparison

Supplementary Information:

NP-205 ∂ S/ ∂ R, ∂ S/ ∂ F during 2020, 2023 COP temporary deviations

NP-205 Deviation 2020-11-04 - 2021-01-31

Supplementary Information

Marsh stage response over COP / IFT / ERTP / IOP

Rain & flow drivers for SMap rain, flow

Stage	Rain	Flow
		Specify flows for
NP-205	NP-205	S12A + S12B each model
NP-201	NP-201	S12D
NESRS1	NP-201	S333 + S356
NESRS2	NP-201	S333 + S356
P33	P33	S12C + S12D + S333
G-620	P33	S12B + S12C + S12D
R-127	R-127	S199 + S200 + S332D

Dynamic Model of stage during IOP : COP Comparison of out-of-sample simplex stage predictions during COP from state space libraries of equal length observed during IOP and COP

Based on observed states rather than probabilistic estimates this is consistent with statistical analysis suggesting it is improbable these stations would observe COP water levels under IOP conditions.

Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. <u>Nature, 344:734–741</u>

Supplementary Information: NE ENP Geology

