Linking Movement to Energy Channel Use in an Estuarine Predator

Cody Eggenberger¹, Ryan Rezek², Rolando Santos¹, Christopher Madden³, Jennifer Rehage¹, Rene Price¹

Florida International University
Coastal Carolina University
South Florida Water Management District

Animal Movement Shapes Ecosystems

- Population Dynamics
- Habitat Connectivity
- Trophic Interactions
- Nutrient Dynamics

What drives movement?

Nathan et al., 2008 (PNAS)

Movement Strategies

- Correlated movement traits
- Function of:
 - Environmental cues
 - Cognition

Abrahms et al., 2017 (Movement Ecology)

Movement Strategy Selection Research

Abrahms et al., 2017 (*Movement Ecology*)

Study Region

Focal Species

Common Snook (Centropomus undecimalis)

- Estuarine dependent
- Euryhaline
- Gape limited opportunistic ambush predators
- Similar prey resources

Atlantic Tarpon (Megalops atlanticus)

Coastal Everglades Lakes Acoustic Array CELA²

Coastal Everglades Lakes Acoustic Array CELA²

Tarpon 55835 2020-05-29

Alligator McCormick

Movement Strategy Classifications- 3 months

PCA to reduce dimensionality

Movement Strategy Classifications-3 months

PCA to reduce dimensionality

K-means clustering

• Silhouette coefficients and gap statistics

Movement Strategy Classifications- 3 months

PCA to reduce dimensionality

K-means clustering

• Silhouette coefficients and gap statistics

What drives movement strategy selection in Snook and Tarpon?

Internal Drivers: Size or Sex-Specific Selection?

Tarpon

• Unable to estimate sex at these sizes

Snook

- Protandric hermaphrodites
- Red line = 50:50 male to female

Size or sex not significant

External Drivers: Environmental

Environment (External Factors) = Conditions + Resources + Risks

Condition = environmental variable that influences an organism's functioning (e.g., temperature, humidity, salinity)

Resource = environmental variable that always has a positive effect on fitness (e.g., food, object, or place)

Risk = environmental variable that has negative relationship with fitness (e.g., predation risk, competition)

Matthiopoulos et al., 2020- "Species-Habitat Associations"

Environmental Conditions as Movement Strategy Predictor

Multinomial Log-linear Regression

- Transient = Homogenous seascape
- Mixed = Heterogeneous seascape
- Resident = Intermediate heterogeneity

Does Movement Strategy Selection Affect Consumer (Snook) Trophic Dynamics?

Prey Resource Seascapes

FIM 21.3m Seine Net Sampling

- SRS Peak Wet & Dry Sampling
- 5 years (Wet 2016 to Dry 2021)
- 713 seine hauls
- Prey were counted and measured
- Subset run for stable isotope analysis
- Physiochemical conditions measured at each site

Prey Resource Seascapes

Common Name	Species	Prey Group	SIA Processing	System	n
Mojarra	Eucinostomus harengulus	Benthic	Composite	Alligator	6
				McCormick	6
Clown Goby	Microgobiusgulosus	Benthic	Composite	Alligator	6
				McCormick	6
Hardhead Catfish	Ariopsis felis	Benthic	Muscle	Alligator	6
				McCormick	6
Mullet	Mugil spp.	Demersal	Muscle	Alligator	4
				McCormick	6
Pink Shrimp	Farfantepenaeus duorarum	Demersal	Composite	Alligator	6
				McCormick	3
Needlefish	Strongylura notata	Pelagic	Muscle	Alligator	6
				McCormick	6
Rainwater Killifish	Lucania parva	Pelagic	Composite	Alligator	6
				McCormick	6
Clupeid	Clupeidae	Pelagic	Composite	Alligator	6
				McCormick	6
Silverside	Menidia spp.	Pelagic	Composite	Alligator	6
				McCormick	6
Anchovy	Anchoa spp.	Pelagic	Composite	Alligator	6
				McCormick	6
Ladyfish	Elops saurus	Pelagic	Muscle	Alligator	6
				McCormick	6
Mayan Cichlid	Cichlasoma urophthalmus	Habitat Generalist	Muscle	Alligator	6
				McCormick	6
Sailfin Molly	Poecilia latipinna	Habitat Generalist	Composite	Alligator	6
				McCormick	6
Grass Shrimp	Palaemonetes spp.	Habitat Generalist	Composite	Alligator	6
				McCormick	6
Mud Crab	Panopeidae spp.	Habitat Generalist	Composite	Alligator	6
				McCormick	6

Homogenous Env Conditions = Homogenous Prey Seascape

Snook & Tarpon: Homogenous → profitable to increase movement

Heterogeneous → profitable to decrease movement

Homogenous Env Conditions = Homogenous Prey Seascape

Snook & Tarpon: Homogenous → profitable to increase movement

Heterogeneous → profitable to decrease movement

Stable Isotope Functional Groups

$\delta^{15}N$ – identify trophic level

- Step-wise enrichment of 3.4‰ = 1 trophic level
- $\delta^{13}\text{C}$ identify origins of organic matter to consumers
 - Changes very little with trophic transfer (0-1‰)

 δ^{15} S – Compliments δ^{13} C (Marine vs Freshwater, DO)

• Changes very little with trophic transfer (0-1‰)

Snook Resource Contributions

Bayesian mixing models

- Alligator = Pelagic dominated
- McCormick = Demersal dominated
- Greater variation in McCormick

No Difference in Snook Trophic Level

Snook Trophic Niche Hypervolumes

Alligator System g 4 2 Benthic 0 Ņ 4 Ģ 6 ò -2 -6 -4 2 4 4 2 Demersal 0 Ņ 4 φ 2 4 6 -2 0 -6 -4 4 2 Habitat Generalist o Resident Ņ 4 Mixed မှ -4 -2 0 2 4 6 -6 Transient Pelagic

McCormick System

Pelagic

Snook Trophic Niche Volumes

Niche volumes differ by:1. Movement strategy2. System

Energy Channel Dependance Scales with Movement

GEER Takeaways

- Capable of classifying movement strategies using acoustic telemetry
- Movement strategy selection → External drivers (e.g., environmental conditions, resources) outweigh internal traits
- Energy channel use and trophic niche shifts with movement strategy
- Water management, restoration, & climate change will likely drive these relationships

Thank You

Center for Aquatic Chemistry and Environment **NSF Center of Research Excellence**

COASTAL FISHERIES RESEARCH LAB