

Development of a Sponge Restoration Strategy for Florida Bay

Greater Everglades Ecosystem Restoration Conference April 2025

William C. Sharp, John H. Hunt, Rachel J. Harris
 Florida Fish & Wildlife Conservation Commission
 Fish & Wildlife Research Institute
 South Florida Regional Laboratory

Florida Keys Satellite Imagery, Florida, Florida Keys, USA, Aerial Map, Map Art, V Satellite Image, Natural Color - Etsy

Hard-Bottom Communities of Florida Bay

- Calcium carbonate bedrock overlain with a layer of unconsolidated sediment
- Community typified by sponges, octocorals, small scleractinian coral, algae
- Sponges historically dominated the heterotrophic biomass

Ecological Importance of Sponges

- Nutrient Cycling
- Remove organic particulate matter
- Habitat for animals that live around sponges
- Habitat for many commensal organisms

Hard-Bottom Communities of Florida Bay - Connectivity to Florida's Coral Reef

Cyanobacterial Bloom-Associated of Mortality of Sponges

 First Documented in 1991

- 2013 bloom in central Florida Bay
- Complete loss of most sponge species; all the larger structure-forming species

Cyanobacterial Bloom Timeline

- Moderate Resolution Imaging Spectroradiometer (MODIS)
 Satellite Imagery
- Correction for cyanobacteria blooms in FL Bay (Cannizzaro *et al.*, 2019)

Blooms becoming more frequent

**Bloom definition: Cyanobacterial Chl-a (Chl_{cl}; Cannizzaro et al., 2019) > 5 mg m⁻³

Repeated periodic cyanobacteria blooms have caused sponge die-offs throughout the Bay

Butler *et al.* 2021. Setting the foundation for renewal: restoring sponge communities aids the ecological recovery of Florida Bay. Ecosphere 12 (12), e01502

Beginnings of Sponge Restoration Research

- Grounded in sponge biology and ecology
 - Sponge propagation
 - Identifying amenable species
 - Timing of transplants
 - Effect of transplants on ecosystem processes

esa

Ecosphere

SPECIAL FEATURE: HONORING CHARLES H. PETERSON, ECOLOGIST

Setting the foundation for renewal: restoring sponge communities aids the ecological recovery of Florida Bay

Jack Butler, $^{1\!\prime}\dagger$ William C. Sharp, 2 John H. Hunt, 2 and Mark J. Butler IV^{1}

Scaling-up Sponge Community Restoration

Sandfly Key Sponge Nursery 2020

"Scaling-up Sponge Community Restoration"

- Produced ~18,000 sponges of 6 species
- Conducted largest sponge outplant yet attempted in Florida Bay 15,000 sponges
- Estimated restoration costs on a per sponge basis

Sponge Restoration Under Continued Environmental Stress

 Develop a risk-adverse strategy to guide sponge restoration in Florida Bay

A Sponge Restoration Strategy That Mitigates Risk

- A strategy that incorporates:
 - Documenting historic cyanobacteria blooms
 - Historic near-shore hard-bottom mapping & surveys of the sponge community
 - Sponge life history characteristics
 - Costs associated with sponge restoration

A Sponge Restoration Strategy That Mitigates Risk

- A strategy that incorporates:
 - Documenting historic cyanobacteria blooms
 - Historic near-shore hard bottom mapping & surveys of the sponge community
 - Sponge life history characteristics
 - Costs associated with sponge restoration

Documenting Historic Cyanobacteria Blooms

 Historic spatial and temporal dynamics of blooms

30 km Camera: 225 km 25°31'42"N 81°51'24"W 111 m

Documenting Historic Cyanobacteria Blooms

A Sponge Restoration Strategy That Mitigates Risk

- A strategy that incorporates:
 - Documenting historic cyanobacteria blooms
 - Historic near-shore hard bottom mapping & surveys of the sponge community
 - Sponge life history characteristics
 - Costs associated with sponge restoration

Historic Near-Shore Hard-Bottom Mapping & Sponge Community Surveys

- Using FWRI 1990s–2011
 Coral and Hard-bottom
 GIS data
- Sponge communities identified from 2002 surveys

Combining Historic Occurrence Data, Hard-Bottom Mapping & Sponge Community Surveys

A Sponge Restoration Strategy That Mitigates Risk

- A strategy that incorporates:
 - Documenting historic cyanobacteria blooms
 - Historic near-shore hard bottom mapping & surveys of the sponge community
 - Sponge life history characteristics
 - Costs associated with sponge restoration

Sponge Life History Characteristics

- Short larval duration limits dispersion and recruitment
- Outplanting to optimize recruitment of sexually-produced larvae
- Outplant sites: Combine mean sponge densities from 2002 surveys with higher density plots that serve as potential "spawning hubs"

Number of individual sponges

Species	Restoration Area 1 Hectare	Spawning Hub 0.01 Hectare
Loggerhead	600	30
Yellow	100	10
Glove	100	10
Sheepswool	100	10
Vase	500	42
Brown Branching	200	20
Total	1600	122

1 HA

A Sponge Restoration Strategy That Mitigates Risk

- A strategy that incorporates:
 - Documenting historic cyanobacteria blooms
 - Historic near-shore hard bottom mapping & surveys of the sponge community
 - Sponge life history characteristics
 - Costs associated with sponge restoration

Costs associated with sponge restoration

						Time				Paver-	Limestone	
		Field			Vehicle Fuel	Propagating	Total	Vesse	Vessel	Mounted	-Mounted	Total
	No.	Day		Trailering	Consumption	Sponges	Man-	1	Engine	Sponge	Sponge	Sponge
Date	Personnel	(hrs)	Nursery	Miles	(Gals.)	(hrs)	Hours	Hours	Hours	Cuttings	Cuttings	Cuttings
			Stirrup									
3/3/2016	3	6.0	Кеу	0.5	0.1	3.0	18.0	4.0	1	161	38	199
			Stirrup									
3/7/2016	6	6.0	Кеу	0.5	0.1	5.0	36.0	6.0	1	652	0	652
			Stirrup									
3/8/2016	6	6.0	Кеу	0.5	0.1	2.0	36.0	4.0	2	199	0	199
			Burnt									
3/14/2016	3	6.0	Point	10.8	0.7	4.0	18.0	5.0	1	250	0	250
			Sandfly									
3/17/2016	4	6.0	Кеу	18.0	1.2	3.0	24.0	4.0	1	299	0	299
			Rachel									
3/31/2016	3	6.0	Кеу	0.5	0.1	3.0	18.0	3.8	0.75	300	0	300
			Rachel									
4/1/2016	3	6.5	Кеу	0.5	0.1	4.0	19.5	4.5	0.5	254	0	254
			Burnt									
4/4/2016	4	6.0	Point	10.8	0.7	3.0	24.0	4.0	1	256	0	256
			Stirrup									
4/8/2016	4	4.0	Кеу	0.5	0.1	2.5	16.0	3.0	0.5	209	0	209

Costs associated with sponge restoration

Estimated Cost per Ha to achieve the restoration objective							
Mean propagation cost per sponge	Mean outplant cost per sponge	Mean total cost per sponge	Cost per hectare Rest + 5 small Hub (2,210 sponges/ha)				
\$8.54	\$3.84	\$12.38	\$27,359.80				

Next Steps...

- Complete sponge restoration strategy document
- Submit to south Florida resource managers for comment: late 2025 target
- Continue sponge ecological-based research to refine sponge restoration practices

Summary

- The sponge communities have been drastically affected during the past several decades
- A risk-adverse sponge restoration strategy is fundamental to preserve the Bay's ecological function
- The project PIs recommend this sponge restoration strategy, when completed, be incorporated into the greater Everglades Restoration Effort

DEP's Florida Coastal Management Program

Florida Keys National Marine Sanctuary

Permit # FKNMS-2024-144

