

Institute of Environment

US Army Corps of Engineers®

Evaluating Population Dynamics of the Everglades Crayfish Within Marl Prairies of Big Cypress National Preserve

> Christina M. Tilley and Nathan J. Dorn Florida International University Institute of Environment

Macroinvertebrate indicators of restoration

Everglades Crayfish

Procambarus alleni

- Dominant in **short hydroperiod** marshes
- Burrows during annual dry downs
- More sensitive to fish predators

Figure 1. Crayfishes were collected from Rocky Glades (1), Shark Slough (2), East Slough (3), and Raccoon Point (4). Crayfish icons indicate occurrence at a sampling location.

Hendrix and Loftus 2000

White Ibis nesting success is limited by crayfish availability

Cocoves et al. 2021

TABLE 1. Prey biomass means (dry $g \pm SE$) for all prey types observed in boluses collected from White Ibis (*Eudocimus albus*) chicks at coastal colonies in Everglades National Park, Florida, USA, during the 2017 and 2018 breeding seasons.

Prey type	2017	2018
Crayfish	0.48 ± 0.24	2.45 ± 0.41
Crabs	1.33 ± 0.26	0.35 ± 0.10
Fish	0.26 ± 0.12	1.37 ± 0.20
Aquatic insects	0.06 ± 0.02	0.05 ± 0.02
Shrimp	0.00 ± 0.00	0.02 ± 0.01
Terrestrial invertebrates	0.00 ± 0.00	0.00 ± 0.00
x̄ g bolus ⁻¹	2.14 ± 0.31	4.25 ± 0.39
n	40	120

Cocoves et al., 2021

Mechanisms limiting Everglades Crayfish abundances in short-hydroperiod wetlands remains less clear

Acosta and Perry 2000

Conclusions about Everglades Crayfish population dynamics from work in the 1990s:

Biomass is limited with hydroperiods < 7 months long

Slower growth in short hydroperiod wetlands

Survival belowground is reduced with hydroperiods < 6 months

Acosta and Perry (2000, 2001, 2002)

Questions

1. Are Evergtabes Captible population in the ited by shortened hydroperiods?

2. What mechanisms might limit Everglades Crayfish abundances in seasonal wetlands?

- a. Mortality during the dry season
- b. Growwith reatesschwing git a everetesseason
- c. Development period

Marl Prairie Wetlands near Loop Road

Avg water depth July: 42cm

Seasonal wetlands with depth and hydroperiod variation

Monitoring population density and biomass dynamics.

Min water depth needed to sample: > 5cm

Sample Seasons:
1) January 2023, 2024 (Early dry season)
2) July 2023, 2024 (Early wet season)
3) Nov/October 2022, 2023, 2024 (Late wet season)

Interior and Exterior sites achieved similar densities when flooded

Hydroperiod length

Medium hydroperiod sites had higher biomass in the wet season

Did Medium hydroperiod marl prairies support more aboveground biomass of Everglades Crayfish on average?

Yes. But that's mostly caused by seasons with crayfish belowground

Do crayfish grow faster in the longer hydroperiod wetlands?

Within site density treatments:

- High density = 3 crayfish
- Low density = 1 crayfish
- N = 6 buckets per site
 (3 reps per treatment per site)

Duration: 3 weeks (July 2024)

Total bucket area: 0.1m²

Size of juvenile crayfish used: 8-9mm carapace length

Site-specific resources

Ambient phosphorus

Growth Results

Proportional Growth Rate: $ln(\frac{final mean dry biomass}{starting mean drybiomass})$

Site x Density model

Site * Density F_{11,22} = 3.164; **P** = 0.01

<u>TP x Density model</u> No overall effect of periphyton TP

Interaction: Phosphorus * Density F_{1,30} = 5.83; **P** = 0.02*

Summary of findings

- Most juvenile recruitment was timed to reflooding of the marsh in the early wet season
- Crayfish in short and medium hydroperiod marl prairies reached similar densities when flooded
- Average biomasses were lower in short hydroperiod wetlands
- Average biomass during flooded periods was not generally different between regions
- Everglades Crayfish tolerates a range of hydroperiods but will be belowground in most dry seasons (during bird nesting).

The will to survive

I exist belowground, in a world of my own, Carved from the earth by my claws ALONE I burrowed deep, unearthed the land, Now searching for waters under where I stand

My survival depends on these fickle waters On withering fields and patchy fodder The challenges I face are not of my making, But created by hands that only like TAKING

Yet still, I cling, I carve, I stay, Through limestone caves Where waters stray

Here, I wait in silent trust, For the sweet rain to break this grip of DUST But if the rainy skies Should long delay,

> Will I ever see the light of day?

Questions and Acknowledgements

US Army Corps of Engineers.

Dorn Aquatic Ecology Lab Technicians

