Immobilization of Algicidal Bacteria for Management of Algal Blooms: A Case Study

Kathryn J. Coyne, Yanfei Wang, William C. Holland, Alan J. Kennedy and Kaytee Pokrzywinski

Harmful Algal Bloom (HAB) control and mitigation strategies

- > Response time
 - How quickly do they act?
 - How long do they last?
- > Specificity
 - Are they specific to a single HAB?
 - Do they have an effect on the broader community?
- > Environmental impacts
 - What is the effect on the environment?
 - How long do impacts last?

Competitive **Parasitic** Syneraistic metH-B₁₂ ◀ Homocysteine - NH₄ ◄ NH₄◀ Protease -DOM Fatty acid Plastid biosynthesis cycle Calvin CO2 cycle RuBisCo Mitochondrion Vibroferrin (VF) -Fe(III) ← Fe(II) ← VF-Fe(III) Nucleus cbk Glycolate HGT

Shady A. Amin et al. Microbiol. Mol. Biol. Rev. 2012; doi:10.1128/MMBR.00007-12

Bacteria and Phytoplankton

- Interactions between bacteria and phytoplankton are complex
- Bacteria may regulate algal bloom dynamics
 - Essential vitamins
 - Algicidal compounds
- Outcome of interactions are likely species specific

Shewanella sp. IRI-160

ARTICLE IN PRESS

Harmful Algae xxx (2004) xxx-xxx

A bacterium that inhibits the growth of *Pfiesteria piscicida* and other dinoflagellates

Clinton E. Hare, Elif Demir, Kathryn J. Coyne, S. Craig Cary, David L. Kirchman, David A. Hutchins*

College of Marine Studies, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
Received 15 October 2003; received in revised form 4 January 2004; accepted 15 March 2004

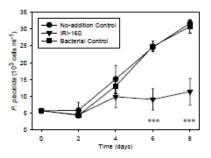
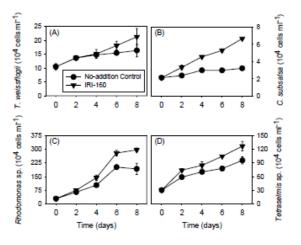



Fig. 1. Impact of bacterial strain IRI-160 (10^8 cells ml^{-1}) on P. piscicide cultures. Controls include both the addition of $0.2 \, \mu m$ filtered sterile medium (control) and the addition of a harmless bacterium at 10^8 cells ml^{-1} (bacterial control, BRI-106). P. piscicide counts included only fiagellated zoospores, and encysted cells were not enumerated. Data points represent triplicate means ± 1 S.D. Significant differences between the control treatments and IRI-160 addition are indicated by *: P < 0.05; **: P < 0.01; ***: P < 0.001.

- Isolated from Delaware's inland bays and broadly distributed along the US East Coast
- Inhibits growth of a broad range of dinoflagellates, including Karenia brevis
- Stimulates the growth of other phytoplankton species

Algicide IRI-160AA: Bacteria-free exudate from *Shewanella* sp. IRI-160

At the application rate required to control dinoflagellate growth:

- No negative effects on other phytoplankton or protists (Hare et al. 2005, Pokrzywinski et al. 2012, Tilney et al. 2017)
- No negative effects on copepods or different life stages of crabs or oysters (Simons et al. 2021)
- No evidence of primary stress response in juvenile finfish (Simons et al. 2025)

Transition to Management: Application Strategies

- 1. Dispersal of large quantities of bacteria
 - May raise concerns about biosafety
 - May dissipate quickly
- 2. Repeated dosing of IRI-160AA
 - Labor intensive
 - May dissipate quickly

> Solution: In situ "Bioreactor"

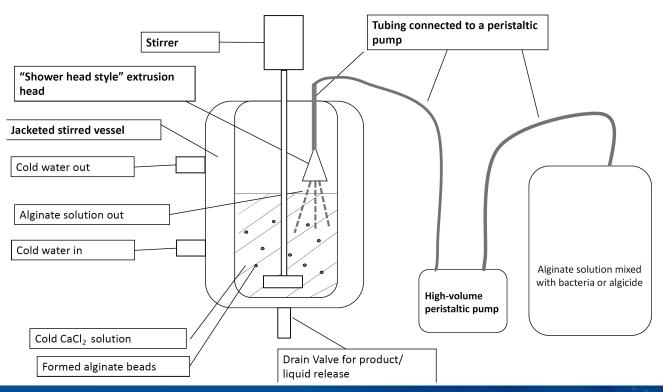
- Algicide produced where needed
- Limited release of bacteria
- Can be retrieved when no longer needed

Transition to Management: Immobilized *Shewanella* for targeted deployment

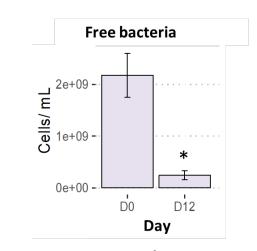
Shewanella sp. IRI-160 immobilized in alginate beads

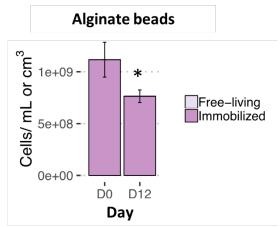
- Biomedical and food technology industries
- Easy to prepare and store
- Can be deployed in mesh bags
- Alginate gel is biodegradable: little impact on environment

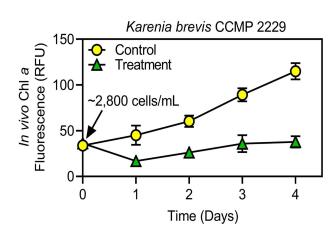
"Environmentally friendly" approach to control harmful dinoflagellate blooms



"DinoSHIELD"


Alginate Hydrogels





DinoSHIELD: Laboratory Culture Experiments

- Protects bacteria
- Prevents dispersal
 - 99.94% of bacteria retained in matrix
 Wang and Coyne (2020)

 Effective against a broad range of dinoflagellates
 Wang and Coyne (2020)
 Wang et al. (submitted)

Transition to Management: Safety Assessment

1. Environmental Impacts

What effect does DinoSHIELD have on water quality?

2. Effects on Non-Target Organisms

➤ How does treatment with DinoSHIELD affect the non-target microbial community?

3. Retention of Shewanella sp. IRI-160

How well does DinoSHIELD retain Shewanella in a real-world setting?

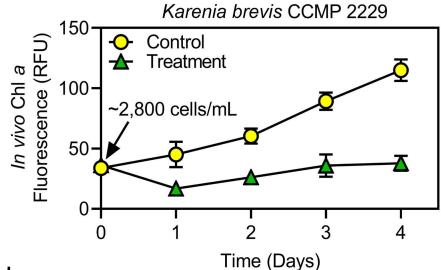
Safety Assessment: Objectives

Evaluate DinoSHIELDs within small-scale, enclosed, *in-situ* mesocosms:

- 1. Changes in water quality
- 2. Release of Shewanella bacteria
- 3. Impacts to microbial communities
 - In the absence of a bloom

Methods

- Mass produced DinoSHIELDs
- Packed in 1 μm mesh size polypropylene bags



Methods

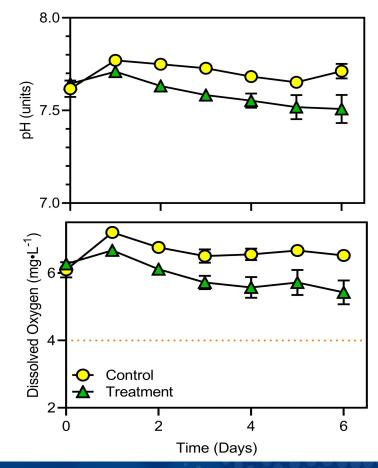
- Control (N=4): No addition
- Treatment (N=4): 3.4 L beads in
 730 L field water (v/v = 0.46%)

This rate was effective to control the growth of *Karenia brevis* in lab culture (57-67% algicidal activity)

Methods

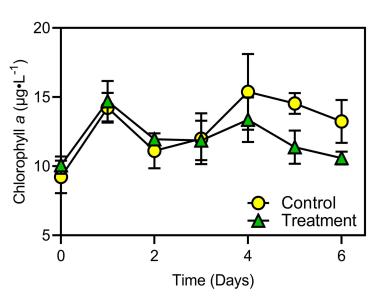
- Water samples were collected on Day 0 before the treatment, then every day after the treatment for 6 days
- Overall photosynthetic biomass
 Eukaryotic microbial community
 - Chlorophyll a concentration
- Water quality
 - Dissolved oxygen
 - pH
 - Temperature
 - Salinity
 - Nutrients

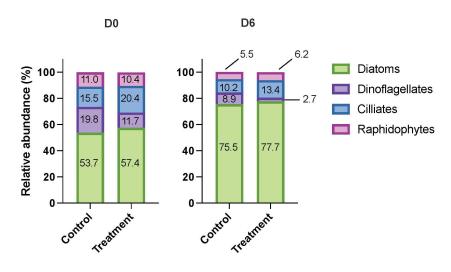
- Eukaryotic microbial community composition and diversity
 - MicroID (diatoms, dinoflagellates, raphidophytes, ciliates)
 - 18S rRNA sequencing
- Release of Shewanella from DinoSHIELDs
 - qPCR



Water Quality

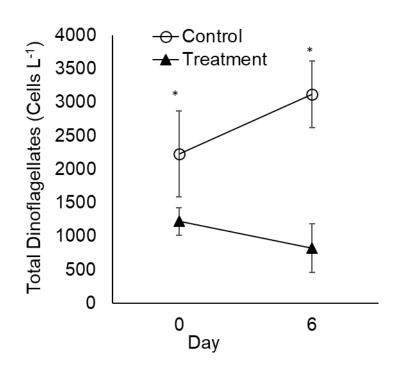
 No significant differences in salinity, temperature or nutrient concentrations


- Declining pH (~0.2) in treatment
- Decrease in dissolved oxygen
 - Still > 4 mg/L (hypoxia levels)
- Evidence of heterotrophic activity?



Community Composition

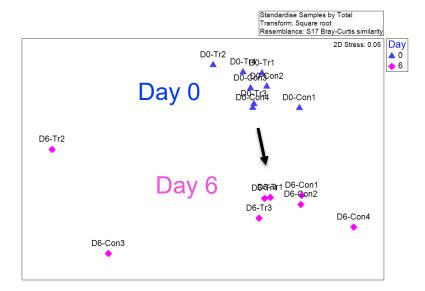
No significant difference in chlorophyll *a*


MicroID:

- Dominated by diatoms
- Low dinoflagellate abundance

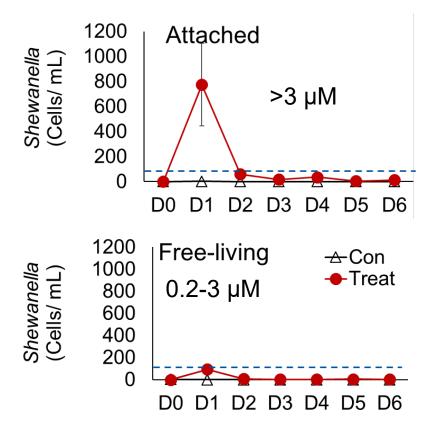
Dinoflagellate Abundance?

Dinoflagellate abundance decreased in treatment



Dinoflagellate abundance was pretty low in these samples

18S rRNA Sequencing: Eukaryotic Microbial Community


Significant changes in community structure over time

On Day 6:

- Dominated by diatoms
- No significant difference in community structure between controls and treatment
- ➤ Richness and diversity in treatment was significantly greater than control (p<0.05)

Shewanella retention

- Shewanella was released from DinoSHIELDs at very low levels
- More Shewanella attached to particles

► Total bacteria in the environment:
 > 10⁷ cells/ mL

Conclusion: Safety Assessment of DinoSHIELD

1. Environmental Impacts

- Little effect on water quality
- Slight decrease in DO and pH: Evidence for an increase in heterotrophic activity in response to DinoSHIELD

2. Effects on Non-Target Organisms

- ➤ No significant effect of DinoSHIELD on community composition
- Significantly greater diversity and species richness in treatments

3. Retention of Shewanella sp. IRI-160

Transient increase in Shewanella abundance, with most associated with particles >3 μm

Transition to Management: Future Work

- Complete laboratory experiments to address requirements for permitting through the Federal Food, Drug, and Cosmetic Act (FDCA)
- 2. Conduct field demonstration in small, red-tide impaired embayment on southwest FL Gulf Coast (<1 acre)
- 3. Monitoring to examine changes to water quality and the microbial community after DinoSHIELD is removed from the system.

Acknowledgements

This project was funded by the Prevention, Control and Mitigation of Harmful Algal Blooms program at NOAA National Centers for Coastal Ocean Research (Grant# NA20NOS4780185)

Many thanks to students, staff and postdocs who participated in this project:

- Chris Holland (NCCOS)
- Alexandria Hounshell (NCCOS)
- Steve Kibler (NCCOS)
- Lonnie Gonsalves (NOAA)
- David Kidwell (NOAA)
- Tyler Harman (NCCOS)

- Mark Vandersea (NCCOS)
- Ana Rial (NCCOS)
- Lynn Wilking (NCCOS)
- Kari St. Laurent (NCCOS)
- Ashvin Iresh Fernando (ERDC)

