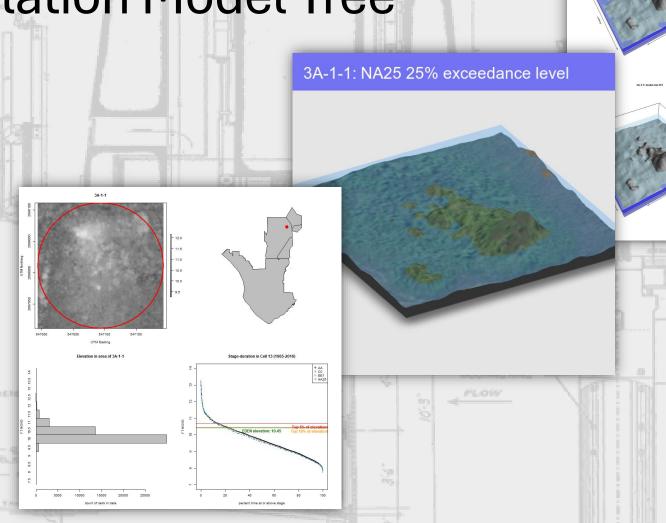
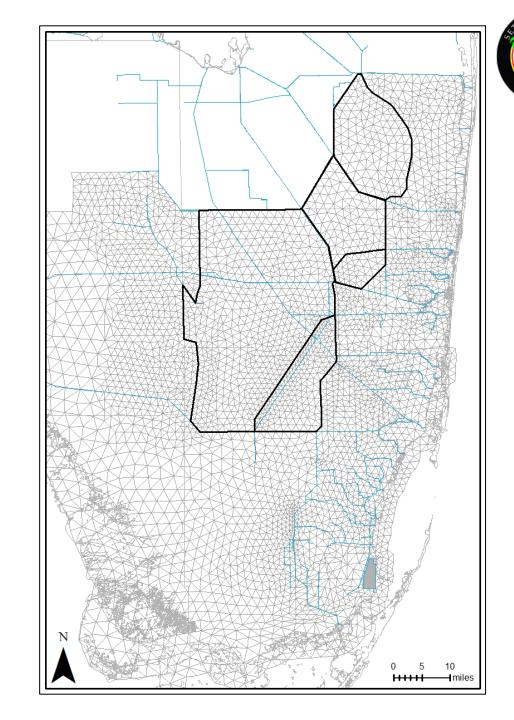
Regional Simulation Model Tree Island Tool

September 21, 2023


Chris Altes

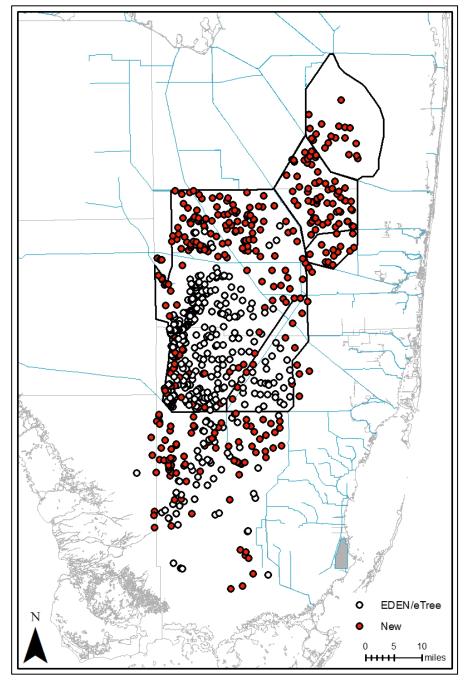
Planning and Policy
Division, Environmental
Branch, Cultural
Resources Section

US Army Corps of Engineers₈

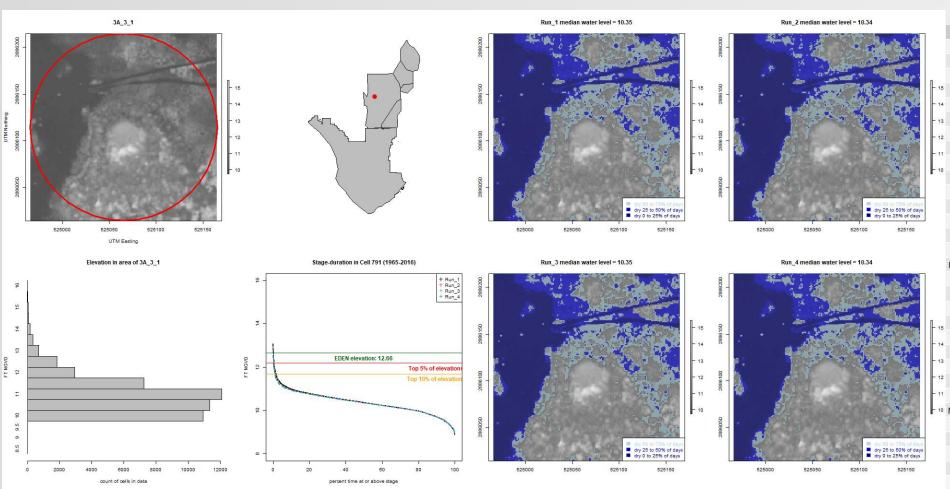

- How do the modeled scenarios change water levels at this location?
- •What are meaningful elevations at tree islands?
- •Do the changes in modeled scenarios produce changes at meaningful elevations?
- •How can we expand our inventory of sampled locations?
- •What did it look like before C&SF (though not necessarily before major drainage)?
- •How can we translate difficult-to-access RSM-GL netcdf files into interpretable and site-specific data?

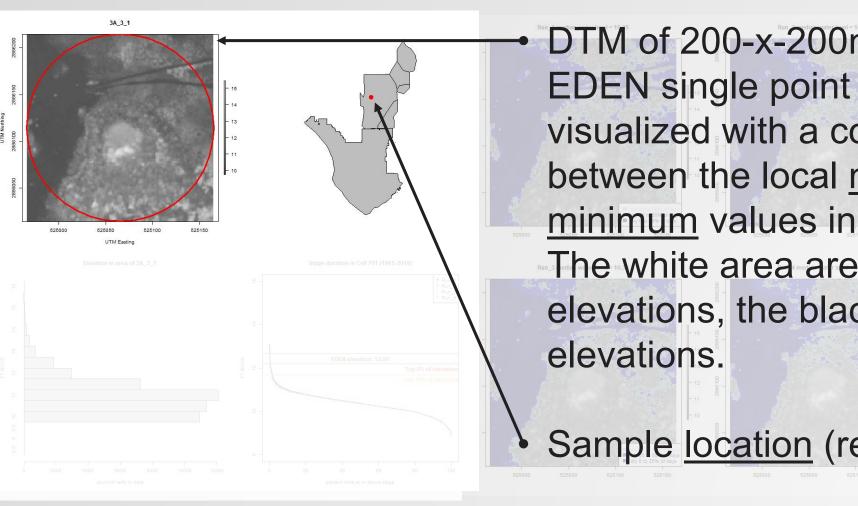
RSM-GL

Regional Simulation Model - Glades and Lower East Coast Service Area


- •Used by Interagency Modeling Center to simulate changes in operations
- •Regional model incorporating constructed features, terrain, rainfall, and operations
- •Extends from the boundary of the EAA to Florida Bay
- •Irregular triangular cells
- •18993 days (1965-2016) and 7076 cells (currently)
- •Output file includes daily flow vectors and stage for each cell

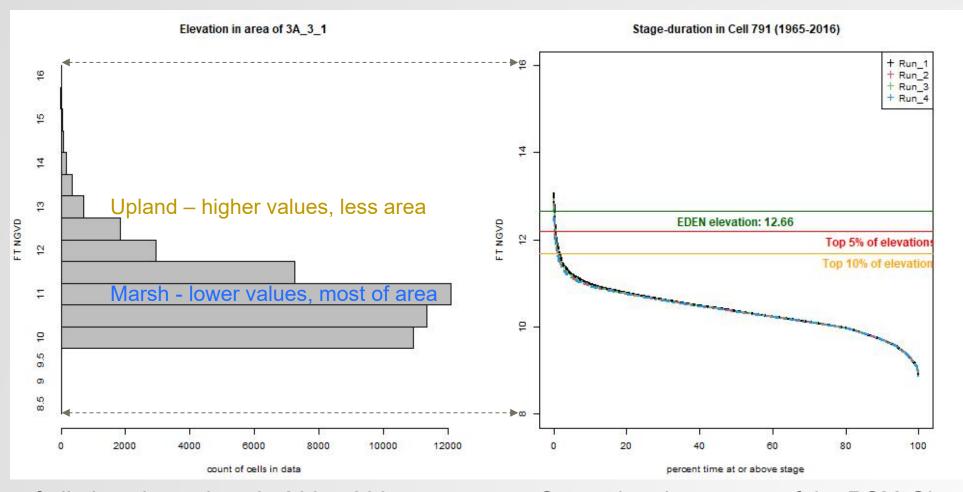
Sample Locations


- White Points: EDEN points (400)
 - Have documented elevations
 - Part of prior analyses
 - Limited geographic area
- Red Points: <u>draft</u> Additional Points (380)
 - Does not included surveyed elevations
 - Includes WCA 2A, WCA 2B, northeastern and northwestern ENP
 - Includes locations outside of the compartments and where there may be unintentional effects



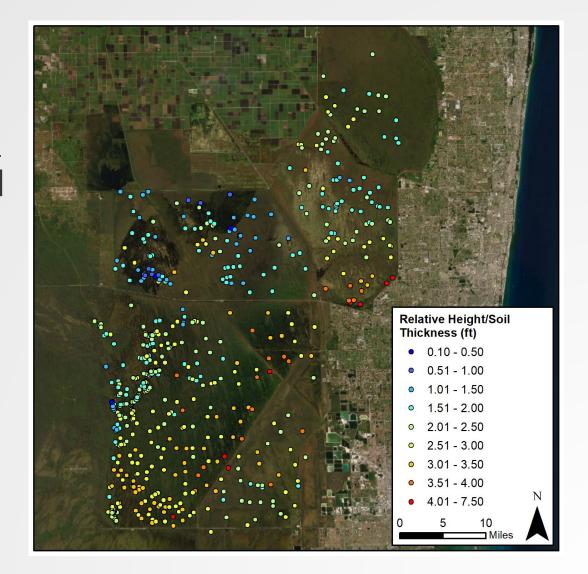
	Tree Island 3A_3_1 derived stats	Run_1	Run_2	Run_3	Run_4
	Maximum yearly count of days exceeded				
	EDEN	52	24	42	6
	EDEN minus 40 cm	186	170	172	160
15	Top 10% of area	158	131	146	116
14	Top 5% of area	89	79	81	70
13	Median yearly count of days exceeded				
12	EDEN	0	0	0	0
11:	EDEN minus 40 cm	0	0	0	0
10	Top 10% of area	0	0	0	0
10	Top 5% of area	0	0	0	0
	Minumum yearly count of days exceeded				
	EDEN	0	0	0	0
	EDEN minus 40 cm	0	0	0	0
	Top 10% of area	0	0	0	0
	Top 5% of area	0	0	0	0
	Maximum yearly count of days contiguous exceeded				
	EDEN	52	23	29	6
	EDEN minus 40 cm	186	170	172	160
	Top 10% of area	116	103	104	89
15	Top 5% of area	89	79	81	70
14	Median yearly count of days contiguous exceeded				
	EDEN	0	0	0	0
13	EDEN minus 40 cm	0	0	0	0
12	Top 10% of area	0	0	0	0
11	Top 5% of area	0	0	0	0
10	Minumum yearly count of contiguous days exceeded				
	EDEN	0	0	0	0
	EDEN minus 40 cm	0	0	0	0
	Top 10% of area	0	0	0	0
	Top 5% of area	0	0	0	0

BASE INFORMATION


DTM of 200-x-200m area around the EDEN single point for the tree island visualized with a contrast stretch between the local maximum and minimum values in the sample area. The white area are the highest elevations, the black are the lowest

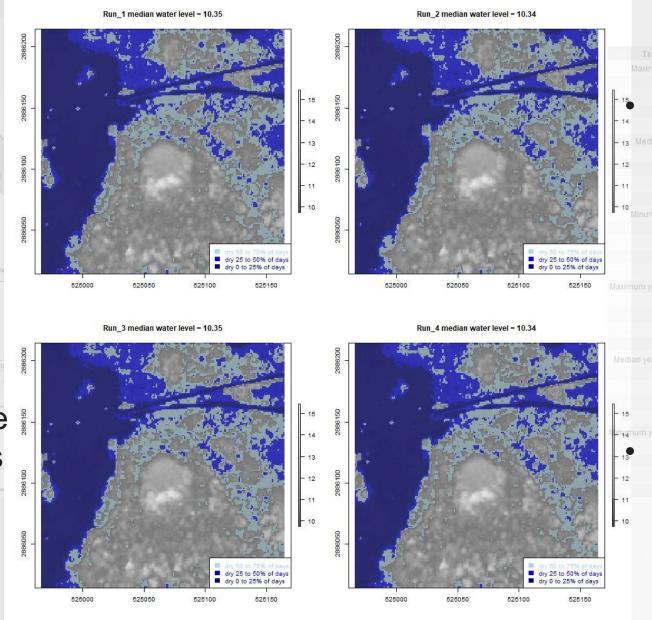
Sample location (red dot)

TOPOGRAPHY AND WATER LEVELS

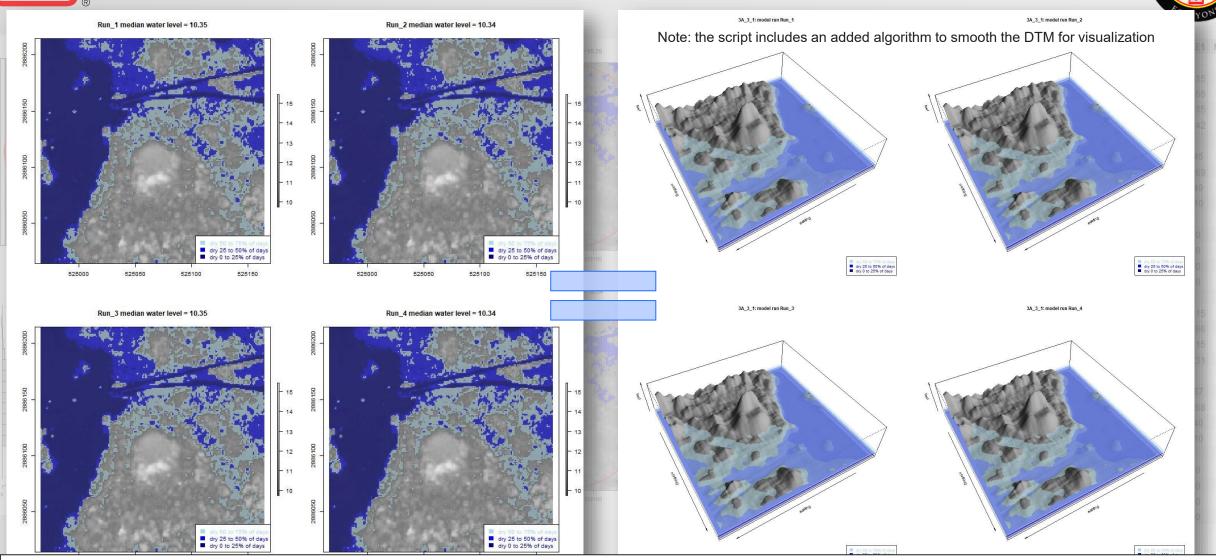


- Histogram of all elevation values in 200-x-200m sample area including surrounding marsh at the same vertical scale as the stage-duration curve. The Y axis is elevation, the X axis is amount of area within the 200-x-200m sample (the count is by raster cell)
- Stage-duration curves of the RSM-GL model runs (color-coded) shown with EDEN elevation (green, if available) and the top 5% (red) and top 10% (orange) of DTM elevations in the sample area as horizontal lines on top of the curves

- Comparing the generated heights to the HAED measurements of slough bottoms, an <u>approximation</u> of soil thickness can be generated
- Difference from height of island and local median provides a relative height



DIFFERENCES IN SCENARIOS

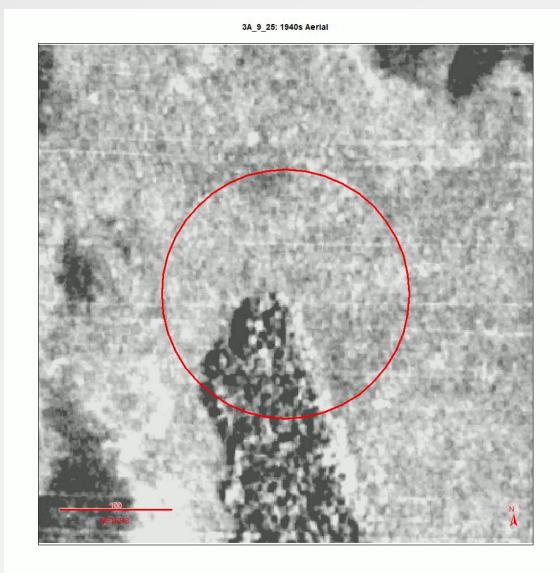

- The DTM visualized with a contrast stretch remains the same as the left panel
- The 75%, 50%, and 25% exceedance values of water levels for each of the RSM-GL model runs are color-coded

The coloring is intended to show what is covered by water up to three-quarters, one-half, and one-quarter of the time in the RSM-GL model run

DTM is <u>not</u> vegetationcorrected

EXAMPLE OUTPUT VARIATIONS

The lightest blue is the 25-50% exceedance (mostly dry), the middle blue is the 50-75% exceedance water level, and the darkest blue is the 75% exceedance (mostly wet) from the stage-duration curves previously shown. The two images show the same information. If a color is not present, it means that point is not about the ground surface in the sample window at that point in the stage-duration curve (drawn below ground on the right).


- Summary statistics on counts of days with exceeded values by water year (May 1 Year 1 through April 30 Year 2). This is presented in maximum, median, and minimum counts in days by water year
- Includes EDEN elevation, EDEN elevation minus 40 cm (a hardwood rootzone proxy), the top 10% of elevation values in the DTM, and the top 5% of the elevation values in the DTM
- Separately summarizes <u>continuous</u>
 exceedances in count of days. This is how
 many days in a row the threshold values are
 exceeded.

			TING TH	PAG
Tree Island 3A_3_1 derived stats	Run_1	Run_2	Run_3	Run_4
Maximum yearly count of days exceeded				
EDEN	52	24	42	6
EDEN minus 40 cm	186	170	172	160
! Top 10% of area	158	131	146	116
Top 5% of area	89	79	81	70
Median yearly count of days exceeded				
EDEN	0	0	0	0
EDEN minus 40 cm	0	0	0	0
Top 10% of area	0	0	0	0
Top 5% of area	0	0	0	0
Minumum yearly count of days exceeded				
EDEN	0	0	0	0
EDEN minus 40 cm	0	0	0	0
Top 10% of area	0	0	0	0
Li Top 5% of area	0	0	0	0
Maximum yearly count of days contiguous exceeded	l .			
' EDEN	52	23	29	6
EDEN minus 40 cm	186	170	172	160
Top 10% of area	116	103	104	89
Top 5% of area	89	79	81	70
Median yearly count of days contiguous exceeded				
' EDEN	0	0	0	0
EDEN minus 40 cm	0	0	0	0
! Top 10% of area	0	0	0	0
Top 5% of area	0	0	0	0
Minumum yearly count of contiguous days exceeded	i			
EDEN	0	0	0	0
EDEN minus 40 cm	0	0	0	0
Top 10% of area	0	0	0	0
Top 5% of area	0	0	0	0 11

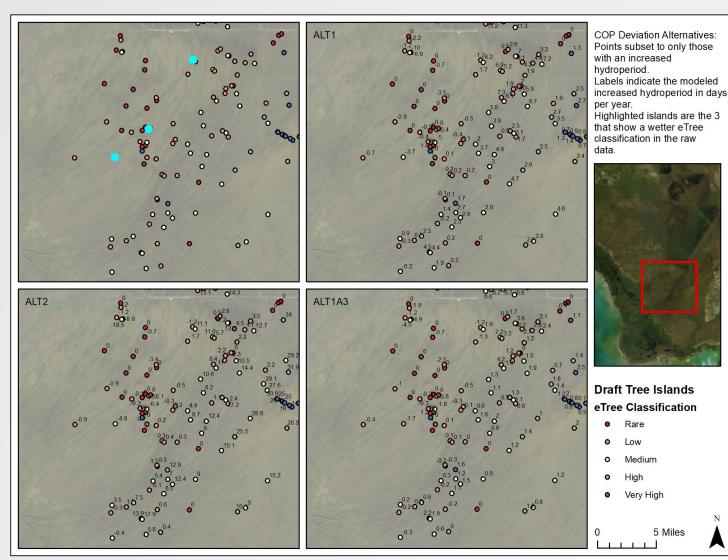
- For comparison to pre-C&SF
- Georeferencing of historic aerials is not always precise, so wider extents are used – the view is from farther out than preceding graphics
- Script modifies the colors to make things "pop:" it makes "dark" areas darker and "bright" areas brighter. The originals are often very gray

ESSAYONS

- National Agricultural Imagery
 Program Plus (NAIP Plus) accessed
 and exported
- Server-based data from the U.S.
 Department of Agriculture
- Resolution is generally 1 meter
- Uses the same extent as the 1940s aerial for visualization quantitative change



SHOWING MODELED CONDITIONS


- Three-dimensional model made from the DTM with "texture" from the NAIP Plus aerial photograph
- Water level from the RSM-GL modeling
- Vertical heights are exaggerated, but not as much as previous slide

- Apply the tree island hydroperiod categories from eTree to more locations
- Using DTM-derived elevations
- Compare modeled scenarios from RSM-GL to see if and where there is meaningful change in tree island hydroperiods: is it a potential change in character and use?

Updates:

- Deriving heights and statistics from regional 2025 Monte Carlo DTM
- Integrated targets provided by MTI
- Began implementing canopy mapping to refine target areas

In the future:

- As available, add vegetation data with threshold elevations
- Incorporate additional locations
- Add scripts to calculate any RECOVER metrics as they become available