Solute Transport in Seawater Flooded Soils: Environmental Impacts and Insights from Experiments, Numerical Modeling, and Machine Learning

Greater Everglades Restoration Conference

Girma W. Awoke

Niguss S. Hailegnaw Mulatu L. Berihun Haimanote K. Bayabil

April 23, 2025

Solute transport

- Impacts agricultural productivity
- Disrupts optimal condition
- Effects of agricultural management practices
- Impacts of seawater flooding

Motivation: Soil hydrology

https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/florida/FL686/o/Dade.pdf

Motivation: Sea level rise in the past

• A cumulative spatial and temporal SLR by up to 25 cm and 10 cm over 29 years

Berihun et al. (under review)

Motivation: Sea level rise in the future

https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-techreport.html

- Sea level along the U.S. coastline is projected to increase by 25 30 cm
- Flooding: 10x as often as it does today

Flooding in South Florida

• Extreme weather, hurricane, and flooding

© Miami Herald, 2015 Flooding in Miami-Dade, Florida

Photo by Bruce Schaffe.

Impacts of Seawater flooding

- Freshwater - Seawater

(Hailegnaw et al., 2023&2024)

• Simulate solute transport within saturated soil columns

Biscayne

< 2mm

61cm, ø15 cm

Porewater sampling and analysis

• Samples collected at three levels

• ICP – OES and segmented flow analyzer

Solute transport modeling

Hydrus-1D

- Water flow, solute and heat transport
- Experiments in greenhouse and actual field setting
- Water flow: Richard's equation $\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K \left(\frac{\partial h}{\partial z} + 1 \right) \right]$
- Solute transport: advection dispersion type of equations $\frac{\partial \rho S}{\partial t} + \frac{\partial \theta C}{\partial t} = \frac{\partial}{\partial z} \left(\theta D \frac{\partial C}{\partial z} \right) - q \frac{\partial C}{\partial z}$

(1)

(2)

Boundary conditions

Constant pressure - unsaturated

Constant pressure - saturated

(5) Solute transport and reaction parameters

(4) Baseline information Chemical properties

Machine learning algorithms

- Decision Tree (DT) regression and classification problems
- Random Forest (RF) constructs multiple decision trees
- Extreme Gradient Boost (XGB) powerful to capture non-linear relationships

Statistical analysis

Seventy percent of the data is used for training

Model performance evaluation: R² and RMSE

All statistical analyses are performed in R and Python

• High EC and pH values in freshwater flooded soils

Na and Mg concentrations

• High release of Na and Mg in seawater flooded soils

Ca and NH₄-N concentrations

• High release of Ca and NH₄-N in seawater flooded soils

Sodium Transport modeling in Krome soil

 $R^2 = 0.77$, RMSE=0.44 mg cm⁻³

 $R^2 = 0.59$, RMSE=1.44 mg cm⁻³

Sodium transport modeling in Biscayne soil

 $R^2 = 0.75$, RMSE=0.17 mg cm⁻³ $R^2 = 0.55$, RMSE=0.96 mg cm⁻³

Magnesium transport modeling in **Krome soil**

 $R^2 = 0.85$, RMSE=0.17 mg cm⁻³ $R^2 = 0.81$, RMSE=0.29 mg cm⁻³

Magnesium transport modeling in Biscayne soil

 $R^2 = 0.94$, RMSE=0.09 mg cm⁻³

 $R^2 = 0.77$, RMSE=0.34 mg cm⁻³

ML models

ML models

Conclusion

Sea water flooding increased concentrations of Na, Ca, NH_4 -N, P, and TP

Machine learning algorithms outperformed Hydrus-1D in simulating all solutes

Hydrus-1D simulated transport of Na and Mg

Machine learning models can be used to understand the transport and fate solutes

Acknowledgements

Dr Bayabil Members of the research group

Tropical Research & Education Center