Biophysical Simulation of Wetland Surface Flow at DPM and Everglades-wide to Assess Restoration Effectiveness

Jay Choi¹, Jud Harvey¹, Laurel Larsen²

1- U.S. Geological Survey, Reston, VA and 2-University of California-Berkeley

With acknowledgements to our SFWMD colleagues :

Colin Saunders, Sue Newman, Walter Wilcox, and Fred Sklar

Information noted as "in review" or "in preparation" is preliminary and is subject to revision. It is being provided to meet the need for timely best science on the condition that neither the USGS nor others shall be held liable for any damages resulting from use of the information.

Everglades Flow and Associated Functions

- Sloughs convey water during wet season to lessen flood heights
- Sloughs store water during dry season to moderate dry-downs and fires
- Dry-season water storage sustains ponded waters that concentrate prey during critical season for wading birds

"Sediment erosion in sloug sloughs deepens sloughs and builds ridges during wet season

ridge

Everglades hydrologic models do not currently consider vegetation and microtopographic flow resistance

Hydraulic Flow Resistance = function of (slough vegetation density, ridge proportion, microtopographic height, ridge shape, and water depth)

How Can High-Functioning Everglades System Be Restored?

Loss of microtopography, deep-water sloughs, water storage capacity, and habitat value

Prototype Restored Flow Outcomes at Decomp Physical Model

S-152 Discharge Structure

L67C canal backfill & levee removal

DPM Active Marsh Improvement (AMI) Reconnected Historical Sloughs

Ridge proportion p = 0.84

Pre-AMI (2014 Dec)

Post-AMI (2020 Feb)

Ridge proportion p = 0.73 DPM lessons currently being applied in Southern Everglades Restoration:

CEPP-S Project (2024-2028)

 Additional construction of S-631, S-632, and S-633 culverts.

• Expand levee removal along the L67C

• Expand Active Marsh Improvement

Restored High Flow Prototyped at DPM Seasonal high-flow releases conducted between 2013 and 2022

Experimental Design S-152 L67-A 1.6 miles DPM Control Control Flow-way Site Site No **Treatment Sites** Fil Partial Εİ Complete Fill 1.67-0

BioFRE, a biophysical flow rate expression for overland flow

q =Conveyance × Slope

Conveyance = overland flow per unit "driving force" $= q/S = \frac{1}{n_{eff}} \cdot h^{\frac{5}{3}}$ $BioFRE Conveyance = \left[p \left(n_r^{-3/5} (h - z_p) \right)^{\omega} + (1 - p) \left(n_s^{-3/5} h \right)^{\omega} \right]^{5/3\omega}$

q: overland flow per unit width [L²T⁻¹] *S*: surface water slope [unitless] *h*: water depth in slough [L] *S*: surface water slope [unitless] *n*_{eff}: effective roughness [TL^{-1/3}]

 n_s , n_r : roughness in slough and ridge [TL^{-1/3}] p: ridge proportion [unitless] z_p : ridge elevation [L] ω : landscape averaging exponent [unitless]

Harvey et al. 2009: Larsen et al., 2017

BioFRE Compares Well with Measured Flow and Water Depth at DPM

BioFRE (Biophysical Flow Rate Expression) can be a tool used for exploring the relative importance of factors controlling high flows in the Everglades

Harvey et al., USGS-OFR, 2025

Modeling Sediment Transport that is Potentially Helpful to Sustaining Microtopography but Potentially Harmful due to Transporting Excess Phosphorus

Sediment Entrainment Area

Culvert Flow **Q** (m³/s)

Sediment Redistribution Area

Culvert Flow Q (m³/s)

Larsen et al., Ecological Engineering (2009), Saunders et al., S. Florida Environmental Report (2025)

BioFRE Sensitivity Ranks Importance of Controlling Factors

Controlling Factors

Management-related:

- Structure discharge (Q)
- Spreading angle (θ)

Calculation of Dimensionless Sensitivity (%) $= \left\{ \frac{\Delta objective}{objective_{Base}} \right\} \times 100$

Landscape-related:

- ridge proportion
- ridge shape (fractal dimension)
- Slough directional connectivity
- Microtopographic height
- Vegetation roughness (density, stem spacing)

Vegetation roughness > ridge proportion > culvert Q > spreading angle > microtopography > ridge shape (fractal dimension) > slough directional connectivity

BioFRE Model Scenarios Reveal Challenge of Restoring Full Functionality

Scenarios that vary slough vegetation density and ridge proportion	Slough water depth (m)	Flow velocity (cm/s)	Sediment entrainment area (acres)	Sediment redistribution area (acres)
BASELINE : Pre-AMI-Dense Spikerush with 0.84 ridge proportion	0.69	1.5	9.9	29.7
MINOR LANDSCAPE RESTORATION: Post-AMI-Dense Spikerush with 0.73 ridge proportion	0.64	1.6	11.5	34.5
MINOR LANDSCAPE RESTORATION: Post-AMI-Dense Spikerush with Periphyton and 0.73 ridge proportion	0.64	1.6	11.5	34.6
FULL RESTORATION: Dense Spikerush and 0.42 ridge proportion	<mark>0.34</mark>	<mark>3.1</mark>	<mark>42.1</mark>	<mark>126.4</mark>
FULL RESTORATION : Dense Spikerush with Periphyton and 0.42 ridge proportion	<mark>0.43</mark>	<mark>2.5</mark>	<mark>26.3</mark>	<mark>78.8</mark>
FULL RESTORATION : Sparse Spikerush and 0.42 ridge proportion	<mark>0.30</mark>	<mark>3.5</mark>	<mark>52.7</mark>	<mark>158.4</mark>
FULL RESTORATION : Deep Water Slough and 0.42 ridge proportion	<mark>0.12</mark>	<mark>9.0</mark>	<mark>348.8</mark>	<mark>1,047.5</mark>

- Ridge proportion dominates velocity/sediment outcomes, with slough vegetation density important for full restoration
- For full restoration, the positive higher sediment redistribution is balanced against negative lowered water depth
- For full restoration there is an undesirable increase in sediment entrainment (and likely phosphorus transport), a consequence of water release from canal point sources through culverts
- Present discharge (~ 7.4 cms through culverts) and locally high velocity sources are a challenge to full restoration

Summary of *Bio*FRE Lessons Learned at DPM

- BioFRE only uses landscape features as input and can therefore be used to help explain past changes and explore future restoration scenarios
- BioFRE was validated against observed flow velocities and water depth at DPM
- Slough vegetation roughness is the most sensitive controlling factor but its influence depends strongly on related factors, i.e., ridge proportion, microtopographic height and ridge shape
- Need to consider changing vegetation and landscape conditions to achieve optimal outcomes for drought and flood resilience and ecosystem health

Expressing gratitude for 30 years working in this enriching and supportive Everglades community as I transition from USGS and find new ways to contribute

Best wishes and let's stay in touch!

Jud Harvey judharvey79@gmail.com

Jud's talk: Performance Standards from a Biophysical Simulation of Everglades Sheet Flow

System-wide BioFRE applications informed by RECOVER Data

Central South

Spikerush Slough with Periphyton

See Wednesday poster: Nature, based Reconnection of **Everglades** Wetlands to Sustain Water and **Ecological Resources** Miami, WCA-3A

<mark>СА-ЗВ</mark> Florida, USA

Jud Harvey', Cofin Saunders², Sue Newman², Jay Choi¹, Fred Sklar², Walter Wilcox², Wasantha Lal², Clay Brown², Jing Yuan¹, Christa Zweig², Jie Zeng², Towsif ³⁸ Bhuiyan³, and John Jones

Biophysical Model (BioFRE) Furthers Understanding of Natural System

Harvey et al. Ecological Engineering, 2025

BioFRE Model Helps Explain Present-day Reduction in Flow Capacity

<u>Harvey et al. Ecological</u> <u>Engineering, 2025</u>

BioFRE Sensitivity Analysis Ranks Importance of Controls

Natural system that is degrading -

increasing <u>slough roughness</u> and <u>ridge proportion</u>, and **decreasing** ridge-slough edge (<u>fractal dimension</u>) dominate loss of functions

BioFRE_Well base case sensitivity	Percent change (%) In conveyance (perturbed – base)		
base case value	-	-	-
perturbations	397 - 53		
Combined landscape changes (excluding vegetation roughness)	-56	-39	-64
Ridge proportion (p) increase	-53	-13	13
Directional connectivity of sloughs (DCI) decrease	-16	0.7	-1.0
Fractal dimension of ridge-slough edges (f _f) decrease	0.0	-38	67
Microtopography (z _p) decrease	0.0	3.8	3.4
Ridge roughness (n,) increase	0.0	-20	-18
Slough roughness (n _s) increase	-66	-44	-45
tested slough water depth =	0.15 m	0.4 m	0.65 m

Degraded system that is restoring –

decreasing <u>ridge proportion</u> and <u>ridge-slough roughness</u>, and **increasing** <u>microtopography</u> dominate recovery of functions

BioFRE Poor_base case sensitivity	Percent change (%) In conveyance (perturbed – base)		
base case value	-	-	848
perturbations			
Combined landscape changes (excluding vegetation roughness)	198	3.1	8.7
Ridge proportion (p) decrease	194	2.6	0.8
Directional connectivity of sloughs	H	0.0	0.1
Fractal dimension of ridge-slough edges (f _d) increase	0.0	0.1	7.5
Mierotopography (z _p) increase	0.0	-40	4.2
Ridge roughness (n,) decrease	0.0	60	75
Slough roughness (n,) decrease	74	6.7	0.4
tested slough water depth =	0.08 m	0.25 m	0.50 m

Opportunities for Improving Performance Measures

Biophysical		Outcomes of Restored Flow	 Response Variables and Potential Performance Measures ✓ indicates variables commonly used as performance measures bold indicates potential variables to add as performance measures
	\sum	Hydraulic responses to restored flow	Water depth $$, flow conveyance, vegetation roughness and other factors which affect water storage, flood height improvement, water supply and societal use
	al		
	Biopnysic feedbach	Sediment/phosphorus transport	Phosphorus concentration $$, phosphorus loading to biological communities, sediment entrainment and sediment redistribution areas
		Microtopographic and vegetation change	Microtopographic height , slough proportion , slough vegetation type, directional connectivity of sloughs, fractal dimension of ridge- slough edges
		Ecological productivity and diversity	Aquatic metabolism and related habitat quality indicators, secondary productivity of invertebrates and fish

Conclusion – Revisit What it Means to "Get the Water Right"

To optimize desirable functions, develop new performance measures that help steer **slough proportion**, **slough vegetation community types**, and **microtopography** into balance with higher restored flows through structures

- Optimize storage-volume relationship to moderate extreme water depths
 - <u>convey</u> floods at moderate flood heights during wet season
 - store water and release it slowly during dry season
- Optimize flow velocities, high enough to keep sloughs open by entraining slough sediment but low enough to deposit sediment and phosphorus on nearby ridges, slowing downstream loading
- Optimize depths to maintain significant areas of productive, sparsely vegetated sloughs
 - Supports productivity and diversity
 - o prolongs water-level recession and concentrates prey during critical nesting and rearing seasons