

BENTHIC DINOFLAGELLATES, SPINNING FISH, AND SAWFISH MORTALITIES: IS THERE A CONNECTION?

MICHAEL PARSONS, PH.D.

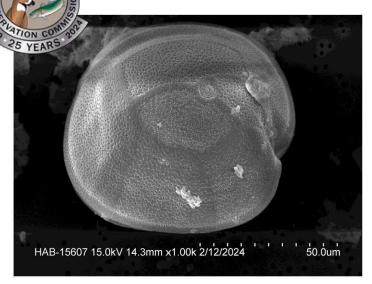
THE WATER SCHOOL

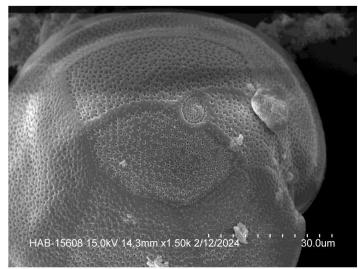
FLORIDA GULF COAST UNIVERSITY

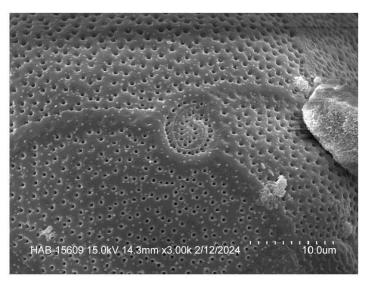
ACKNOWLEDGMENTS

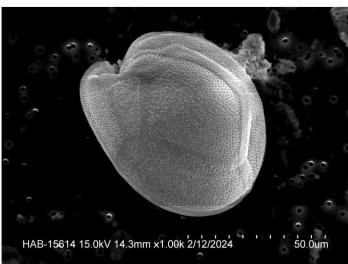
- RACHAEL SCHINBECKLER (FLORIDA GULF COAST UNIVERSITY); TYNISHA MARTIN (FLORIDA GULF COAST UNIVERSITY); ADAM CATASUS (FLORIDA GULF COAST UNIVERSITY
- ALISON ROBERTSON (UNIVERSITY OF SOUTH ALABAMA AND DAUPHIN ISLAND SEA LAB)
- ROSS BOUCEK (BONEFISH & TARPON TRUST)
- FLORIDA FISH AND WILDLIFE COMMISSION
- OTHER ACKNOWLEDGMENTS:
 - NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (EVENT RESPONSE FL.
 - FLORIDA FISH AND WILDLIFE COMMISSION (DATA AND FUNDING)
 - BONEFISH TARPON TRUST (DATA AND FUNDING)
 - LOWER KEYS GUIDES ASSOCIATION
 - FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

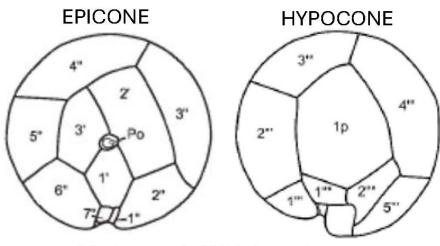



WHAT WE (THINK WE) KNOW:


- MANY DIFFERENT TYPES OF FISH WERE AFFECTED
 - SUGGESTS THE STRESSOR IS SOMETHING IN THE WATER VERSUS DIET-RELATED
- DOES NOT APPEAR TO BE:
 - RED TIDE (ABSENT; NO BREVETOXINS DETECTED)
 - LOW OXYGEN (OXYGEN LEVELS ARE TYPICAL)
 - LOW SALINITY OR TEMPERATURE (VALUES ARE TYPICAL)
 - DISEASE OR PARASITES
 - TYPICAL POLLUTANTS OF CONCERN
- THE BENTHIC DINOFLAGELLATE, GAMBIERDISCUS, OBSERVED IN THE WATER COLUMN (1,000 CELLS L-1) AND IN THE GUT CONTENTS OF ONE MULLET (FL FWC)
 - THIS WAS MUCH HIGHER THAN FGCU RESEARCHERS OBSERVED IN 10+ YEARS OF STUDY IN THE MIDDLE KEYS (AVERAGE OF 39 CELLS/L; MAXIMUM OF 238 CELLS/L)


PITTSBURGH ZOO AQUARIUM EXHIBIT




Bow Channel, 2/2/24, 1m, night collection (HABW240206-004, Stub 4432) *Gambierdiscus caribaeus*

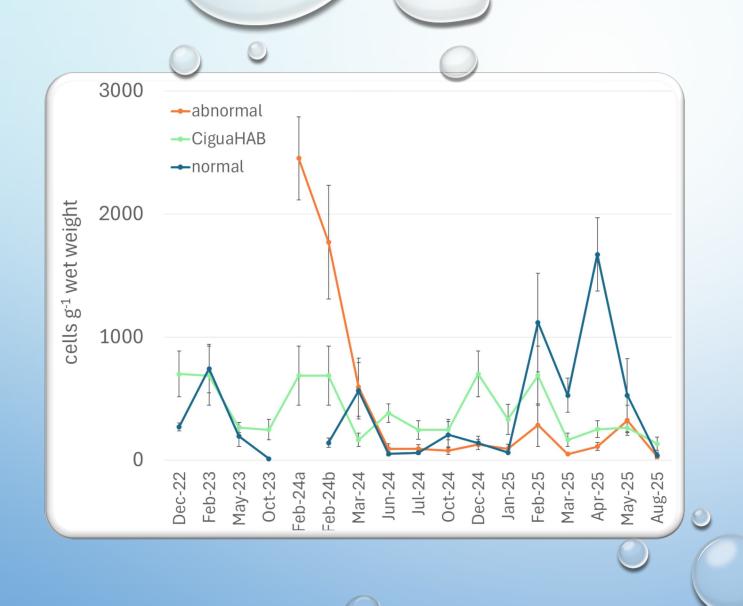


Litaker et al. 2009, for reference

WHY FOCUS ON BENTHIC DINOFLAGELLATES?

- MANY PRODUCE TOXINS (AND TOXIN PRECURSORS)
 - GAMBIERDISCUS CIGUATOXINS (CIGUATERA POISONING); MAITOTOXINS (WATER SOLUBLE)
 - PROROCENTRUM OKADAIC ACID (DIARRHETIC SHELLFISH POISONING)
 - OTHERS

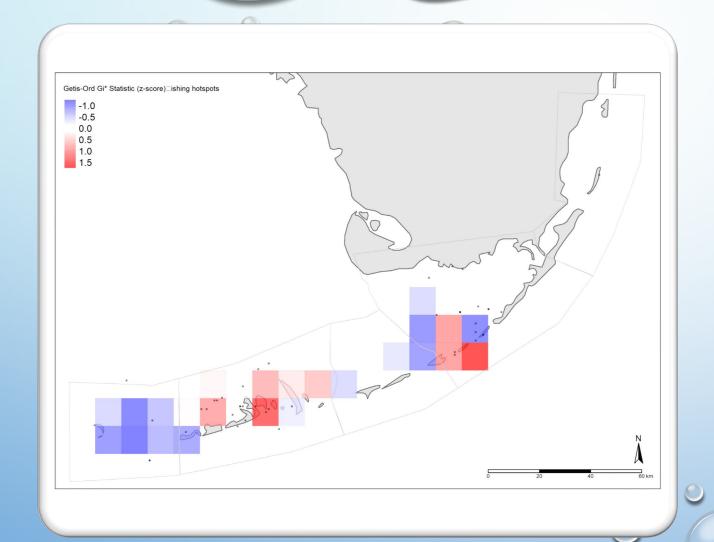
COMPARISONS


- DURING THE SPINNING EVENT
 - LOWER KEYS SITES VERSUS MIDDLE KEYS SITES
 - EARLY FEBRUARY, LATE FEBRUARY, MID-MARCH
 - THALASSIA AND HALIMEDA
 - GAMBIERDISCUS, PROROCENTRUM, OSTREOPSIS, COOLIA, VULCANODINIUM, AND OTHERS
 - SPECIES-LEVEL RESOLUTION FOR PROROCENTRUM, OSTREOPSIS, COOLIA, AND SOME OTHERS (E.G., SINOPHYSIS)
 - INDEPENDENT SAMPLES KRUSKALL WALLACE TESTS

DURING EVENT - SUMMARY OF RESULTS: HALIMEDA

Taxon		Norm_Feb vs Spin_Efeb	Norm_Feb vs Spin_Lfeb	Norm_Feb vs Spin_Mar	Norm_Mar vs Spin_Efeb	Norm_Mar vs Spin_Lfeb	Norm_Mar vs Spin_Mar
Gambierdiscus spp.	1	N < <mark>S</mark> (<0.001)	N < <mark>S</mark> (0.006)	N < <mark>S</mark> (0.021)	N < <mark>S</mark> (<0.001)	N < <mark>S</mark> (0.004)	N < <mark>S</mark> (0.031)
Prorocentrum belizeanum	2	N = S	N = S	N = S	N = S	N = S	N = S
Prorocentrum hoffmannianum	3	N = S	N = S	N = S	N > S (0.04)	N = S	N < <mark>S</mark> (0.006)
Prorocentrum rhathymum	3	N = S	N = S	N = S	N = S	N = S	N = S
Coolia monotis	6 4	N = S	N = S	N = S	N = S	N = S	N = S
Coolia tropicalis	5	N = S	N = S	N = S	N = S	N = S	N = S
Ostreopsis heptagona	6	N = S	N = S	<mark>N</mark> > S (0.013)	N = S	N > S (0.032)	N > S (<0.001)

DURING EVENT - SUMMARY OF RESULTS: THALASSIA


Taxon		Norm_Feb vs Spin_Efeb	Norm_Feb vs Spin_Lfeb	Norm_Feb vs Spin_Mar	Norm_Mar vs Spin_Efeb	Norm_Mar vs Spin_Lfeb	Norm_Mar vs Spin_Mar
Gambierdiscus spp.	1	N < <mark>S</mark> (<0.001)	N < <mark>S</mark> (<0.001)	N = S	N < <mark>S</mark> (<0.001)	N < <mark>S</mark> (0.009)	N = S
Prorocentrum belizeanum	2	N = S	N = S	N = S	N = S	<mark>N</mark> > S (0.005)	N = S
Prorocentrum hoffmannianum	3	N < <mark>S</mark> (0.003)	N = S	N = S	N < <mark>\$</mark> (0.037)	N = S	N = S
Prorocentrum rhathymum	3	N < <mark>S</mark> (0.016)	N = S	N = S	N < <mark>S</mark> (0.011)	N = S	N = S
Coolia monotis	6	N < <mark>S</mark> (0.011)	N = S	N = S	N < <mark>S</mark> (0.049)	N = S	N > S (0.004)
Coolia tropicalis	5	N = S	N = S	N = S	N = S	N = S	N = S
Ostreopsis heptagona	6	N > S (<0.001)	N > S (0.003)	N > S (0.001)	N = S	N = S	N = S

AVERAGE GAMBIERDISCUS CELL DENSITIES ON THALASSIA

AVERAGE PROROCENTRUM CELL DENSITIES ON THALASSIA

SPINNING FISH HOTSPOTS

(COURTESY OF ROSS BOUCEK)

CONCLUSIONS

- GAMBIERDISCUS CELL DENSITIES WERE "ELEVATED" IN THE LOWER KEYS (FEBRUARY 2024)
 - PRIMARILY EVIDENT ON THALASSIA AND IN THE WATER COLUMN
- OTHER BENTHIC DINOFLAGELLATES (THAT WERE FOCUSED ON) WERE NOT
- DENSITIES DECREASED IN THE SUMMER MONTHS (AS EXPECTED)
- HIGHER DENSITIES SEEN IN MIDDLE KEYS IN 2025
 - SOME SPINNING FISH REPORTED IN THE VICINITY
- MULTIPLE BHAB SPECIES INVOLVED?
- ROLE OF COASTAL MORPHOLOGY AND BATHYMETRY?