The Influence of Structural Complexity on the Fine-
Scale Diurnal Space Use of Reef Fishes

Alastair Harborne
Florida International University
aharborn@fiu.edu | k4 @alharborne

- Institute of
www.tropicalfishecologylab.com Environment

D. Kochan, M. Esch, R. Fidler, M. Mitchell, and M. Gonzalez-Rivero



Loss of coral linked to loss of structure
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CompIeX|ty is critical for fishes

* Link between complexity and fish
abundance and diversity well established

 « Important for refuges, spawning, nesting,
| foraging, energetics in strong currents

* Need to move towards an understanding of
when, where, and why complexity is
particularly beneficial

* Understand the full implications of habitat
degradation and conservation options




Fish Biomass

Link to snapper-grouper biomass (RVC data)
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Scenario testing (snapper-grouper)

| Addition of reef structure No-take fishing closure Addition of reef structure + no-take
fishing closure

J

Snapper-Grouper Snapper-Grouper Snapper-Grouper Soapper-Grouper
Bivmass (kg'ha) Biomass (Y4 change) Biomass (% change) Biomass (% change)
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https://maps.oceanwealth.org/#/coral

All species Snapper-grouper Grazing species Agquarium species

Management scenario kg ha=! (SD) kg ha—1 (SD) kg ha=! (SD) kg ha—! (SD) %A
Current 657 (252) 218 (137) 28 (35) 189 (52) -

I: Reef restoration - phase 1a 689 (242) 237 (159) 94 (33) 198 (52) 5%
Il: Reef restoration — phase 2 994 (508) 285 (191) 103 (41) 225 (49)

llI: Artificial structure 1,132 (482) 314 (208) 121 (42) 258 (70)

IV: Fishing closure 698 (204) 269 (110) 112(42) 201 (52)

V: Reef restoration + fishing closure 1,094 (520) 369 (150) 117 (48) 240 (72)

WI: Artificial structure + fishing closure 1,241 (477) 411 (160) 136(49) 274 (73)




Distribution of anchored
recreational vessels 2021-23
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Traits can be used to predict reef fish responses

 Rounded body, specific aspect ratio of caudal fin, large, high
trophic level...

|
|

|

on species likely to decline with flattening
Coral cover less important to driving fish assemblages
Important fisheries species will decline with flattening

fcmc?
What are the mechanisms: Kochan et al. 2023. Oikos, 10011



What aspects of complexity are
particularly important to a ‘loser’?
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Harborne et al. 2022. J. Fish Biology 10, 1009-1024




Effects of loss of complexity on fish
behavior — patch reef movement

Three-dimensional Gridding into
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* 16 individual graysby across 6 patch reefs

* Model including multiple complexity metrics
and other factors

* Maximum height was key factor (space
underneath for ambush / refuge)

Large (>21 cm)
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Bemares—A bold litde gronper, the graysby will approach a diver closely and may

even take food from his hand. It 15 frequently observed m caves on reefs.




Three-dimensional
reconstruction
(6 different reefs)
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What about grazers?

RESEARCH ARTICLE

Patchy delivery of functions undermines functional
redundancy in a high diversity system
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ferent functional groups. Core feeding areas were highly concentrated and con-
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Feeding is highly heterogeneous
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* Few hotspots of feeding distribution
* Generally associated with high-relief
structures along reef edges
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Conclusions

* Complexity is important, but many nuances
for abundance and behavior

* May change fish behavior (spatial and
temporal)

* Flattening will affects fine-scale patterns of
ecological processes such as predation and
grazing (and potentially algal patchiness?)

* Three-dimensional modeling provides
opportunities to explore different metrics
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Distribution of waiting times in each cell

Brownian Motion
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Scaling laws of ambush predator
‘waiting” behaviour are tuned to
a common ecology
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Andrew M. Reynolds* and David W. Sims’3.6

* Time distributed roughly

equally
‘bursty’

exponential) or
truncated power)?

* Bursty pattern typical of
reef ambush predators
(like grouper)?
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e Extend this move-wait
behaviour, which may optimize
foraging success, to a reef fish
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