Utilizing Alkalinity Enhancement to Increase Coral Growth Rates In

Ex-Situ Nurseries

Veronica Paul, Chris Langdon

University of Miami, Rosenstiel School of Marine, Atmospheric, and Earth Science,
Miami, Florida, USA
vap110@miami.edu

Introduction

This work aims to help us find ways to increase the production of slow-growing massive corals for restoration

MARINE, ATMOSPHERIC

& EARTH SCIENCE

• The rate of coral calcification is thought to be controlled by the aragonite saturation state of the calcifying fluid. Where R is the rate of calcification, $\Omega_{\text{arag}} \text{ is the aragonite saturation state equal to the ion concentration product } [\text{Ca}^{2+}][\text{CO}_3^{2-}] \text{ divided by a constant, and n is the order of the reaction, assumed to be 1. This means that both } [\text{Ca}^{2+}] \text{ and } [\text{CO}_3^{2-}] \text{ in the calcifying fluid should impact R.}$

$$R = \left(\Omega_{arag} - 1\right)^n$$

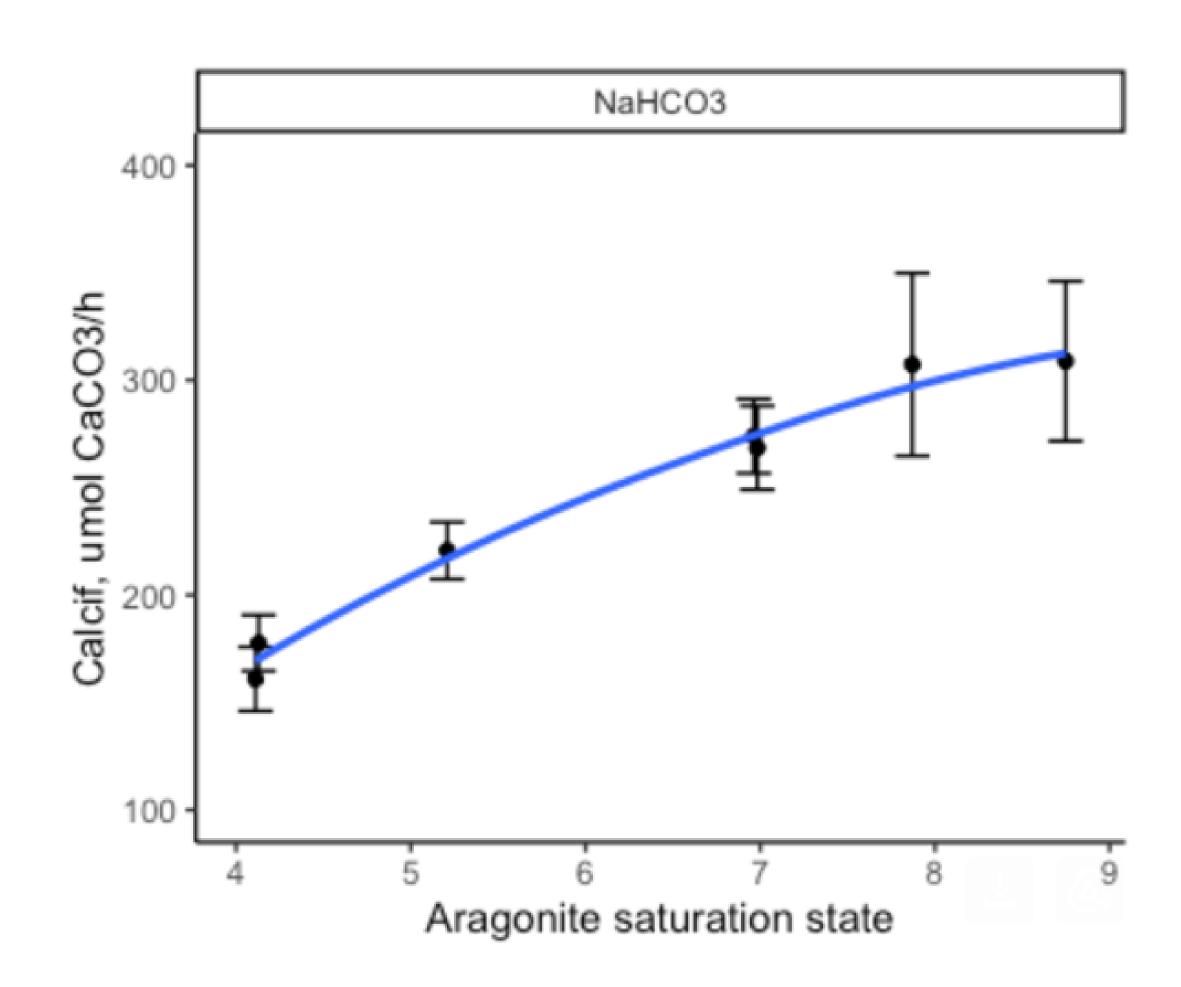
$$\Omega_{arag} = \frac{\left[C\alpha^{2+}\right]\left[CO_3^{2-}\right]}{k_{sp}}$$

By increasing the alkalinity, we are increasing the $[CO_3^{2-}]$ in the seawater which hopefully will result in an increase of $[CO_3^{2-}]$ in the calcifying fluid and hence increase the growth rate of the corals.

Hypothesis

We hypothesize that alkalinity enhancement will **significantly improve** coral growth and calcification rates as compared to the control conditions.

Table 1. Summary chemical treatments added to each 20 gal tank.


[HCO ₃ ⁻], g	[CO ₃ ²⁻], g	Ω_{arag}
0.000	0.000	3.7
0.095	0.040	4.0
0.430	0.184	5.0
0.732	0.325	6.0
1.005	0.463	7.0
1.262	0.601	8.0
1.507	0.737	9.0
1.619	0.881	10.0
	0.000 0.095 0.430 0.732 1.005 1.262 1.507	0.000 0.000 0.095 0.040 0.430 0.184 0.732 0.325 1.005 0.463 1.262 0.601 1.507 0.737

Methods

- Six 20-gallon glass aquaria were placed in raceway tanks to provide temperature control (at 28 °C).
- Each aquaria housed 21-22 adult coral fragments (129 total).
 - Species: Pseudodiplora clivosa (PCLI), Montastraea cavernosa (MCAV), Acropora palmata (APAL), Acropora prolifera (APRO), Acropora cervicornis (ACER), and Siderastrea siderea (SSID).
- Each day, the six tanks received a randomly selected chemical treatment (Table 1).
- After allowing 30 minutes for the chemicals to mix and the corals to respond to the treatment, water samples were collected at 1000 and 1400 h.
- The calcification rate of the corals in the six tanks was then determined by the alkalinity anomaly method. R = -0.5 Δ TA.

Results

- The response to the chemical treatments is shown in Fig. 1.
- Calcification increased in a linear fashion up to a Ω_{arag} of 8 and then leveled off.
- An increase of 1.7-fold was realized between $\Omega_{\rm arag}$ 3.7 and 8.0

Fig 1. Calcification rates (umol CaCO3/h) vs. Aragonite saturation state

Discussion & Conclusion

- Coral growth increased ~1.7 fold, meaning that the simple addition of sodium carbonate and bicarbonate can almost cut the time to raise a massive coral juvenile coral to outplantable size in half.
- Currently this experiment is being repeated to see how individual species respond to alkalinity enhancement.
- Future work will also examine how 'alkalinity-enhanced' corals fare when outplanted to coral reefs.
- These results suggest that alkalinity enhancement could be a simple, economical way to accelerate production of ex-situ raised corals for reef restoration.

Acknowledgements

Special thanks to Dr. Chris Langdon for guidance and support throughout this project and to my undergraduate volunteers, Amelia Myers and Katie Figueroa, for assistance in coral husbandry tasks and data collection.

