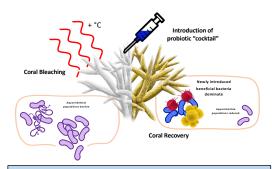


Microbiome Manipulation: Using Beneficial Microorganisms of Corals to Increase Disease Resilience

Cory J. Krediet¹, Grace Klinges^{2,3}, Marina Villoch², Jayden Kuhn¹, Erinn Muller²

ECKERD COLLEGE

¹Department of Marine Science, Eckerd College, St. Petersburg, FL


²Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL, USA

³Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA

Background

- Certain genotypes of the coral Acropora cervicornis are naturally resilient against disease.
- The objectives of this study were to induce bleaching in A. cervicornis while avoiding coral mortality, and subsequently introduce beneficial microbes of corals (BMCs) to replace the dominant coral parasite, Aquarickettsia.

Methods

- Potentially beneficial microbes were isolated from disease resistant A. cervicornis genotypes and characterized.
- A. cervicornis fragments in aquaria were bleached using menthol or temperature shock.
- Coral food was inoculated with a cocktail of BMCs and then fed to the coral fragments during the first week of the experiment.
- 16S sequences were obtained using Illumina Sequencing from samples pre-inoculation, and 1 day, 7 days, and 30 days post-inoculation.
- The sequences were filtered, clustered to form ASVs, and analyzed for alpha diversity, beta diversity, relative abundance, and differential abundance using RStudio.

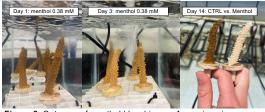
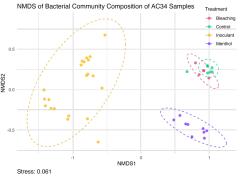
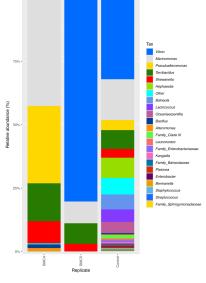




Figure 2. Outcome of menthol bleaching on A. cervicornis

Results

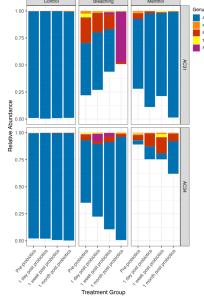
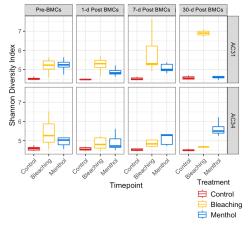


Figure 3. NMDS plot of AC34 samples 1 week after inoculation and all inoculant samples (n=44). Data was rarefied to a sampling depth of 13985.



Inoculant Samples by Dose

Figure 4. Relative abundance plot of inoculant samples averaged across each dose (n=21).

Figure 5. Relative abundance plot of samples from both genotypes across all bleaching treatments and timepoints (n=252)

Figure 6. Boxplot of Shannon Diversity Index for each genotype, treatment group, and timepoint (n=252).

Conclusions

- Menthol-induced bleaching is a quick and effective method to significantly reduce both
 Aquarickettsia and algal symbiont densities (Klinges et al. in review at PeerJ)
- Both bleaching treatments significantly reduced Aquarickettsia populations, and produced shifts towards more diverse microbiomes.
- The menthol treatment was more effective in reducing the abundance of *Aquarickettsia* in corals with the AC34 genotype than the AC31 genotype.
- · The corals did not robustly uptake the BMCs from the cocktails.
- BMC inoculation may be more successful with younger or juvenile corals, which may uptake microbes more readily. We are currently exploring this strategy with the BMC cocktails.

Acknowledgements

- Student support was provided by the Eckerd College Natural Sciences Summer Research Program (NSSRP.
- Research funding for this work was provided by the Florida Protect Our Reefs Program administered by Mote Marine Laboratory and the Eppley Foundation.
- We also thank Mote Marine Laboratory and Eckerd College interns Cara DeLacluyse, Connor Dempsey, Maia Erbes, and Roger Wilder for their assistance with coral husbandry and lab assistance.