Presence, Abundance, and Distribution of Common Invasive and Non-Native Species in the Florida Keys National Marine Sanctuary

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE, ATMOSPHERIC

David Ganz¹, Chris Langdon¹, Harrison M. Albert^{1,2}

& EARTH SCIENCE

Introduction

- Florida is known to have a well-established range of native biodiversity, with South Florida having the highest EAS (established alien species) richness values in the world.¹
- Alien species, or those species that are not naturally found in a particular geographic area, are either classified as non-native or invasive based on their impact on their introduced ecosystem.
- Invasive species notoriously play a deleterious role, outcompeting native species, and possibly fueling native displacement rates.²
- Non-native species are introduced species that may not necessarily cause harm to native species by occupying unutilized niches in the ecosystem. ³
- This research is part of an ongoing study that focuses on documenting the potential occurrence and abundance (or absence) of seven (7) non-native and invasive species in the NOAA Florida Keys National Marine Sanctuary (FKNMS) including:
 - Two (2) stony coral species: Tubastraea coccinea and Tubastraea faulkneri,
 - Two (2) soft coral species: Unomia stolonifera and Xenia umbellate,
 - Two (2) bony fish: Pterois miles and Pterois volitans, and
 - One (1) species of seagrass: Halophila stipulacea.

Methods

- Traditional scuba methods were used to survey each site.
- The site was canvassed as much as possible within safe recreational diving limits (primarily utilizing an ascending grid search pattern).
- If an alien species was observed, identification was made to the species level if possible, and depth, abundance, and an estimate of reproductive fecundity (i.e., juvenile vs. adult for *Pterois spp*.) were noted. Additional information about observable behavior or surrounding habitat complexity was also recorded.
- Dive site names and/or GPS coordinates were recorded for each site post-dive.
- Sites were categorized by depth (i.e., deep [>60ft], moderate [30-59ft], shallow [<30ft]) and type (i.e., reef or wreck).
- Data was analyzed in Microsoft Excel using conditional probability to determine the likelihood of locating any of the noted species in a given depth.

	Indian: Pterois miles	Pacific: Pterois volitans
Dorsal Fin Rays	10	11
Anal Fin Rays	6	7
Pectoral Fin Size	Shorter	Longer
Spot Size	Smaller	Larger
Geographic Range	Africa – Indonesia	Indonesia – W Pacific

Schultz, 1986

Fig 1. 3 images of *Tubastraea spp*. and an ID guide for *Pterois spp*. Fig 1a-1c images were taken on October 2025 at the USNS Vandenberg in Key West, FL. Fig 1a. T. faulkneri. Fig 1b. T. faulkneri (left) side-by-side with T. coccinea (right). Fig 1c. T. coccinea. Fig 1d. Meristic differences of Pterois spp. (Schultz, 1986).

Literature Cited

¹Dawson, W., Moser, D., van Kleunen, M. *et al*. Global hotspots and correlates of alien species richness across taxonomic groups. https://doi.org/10.1038/s41559-017-0186

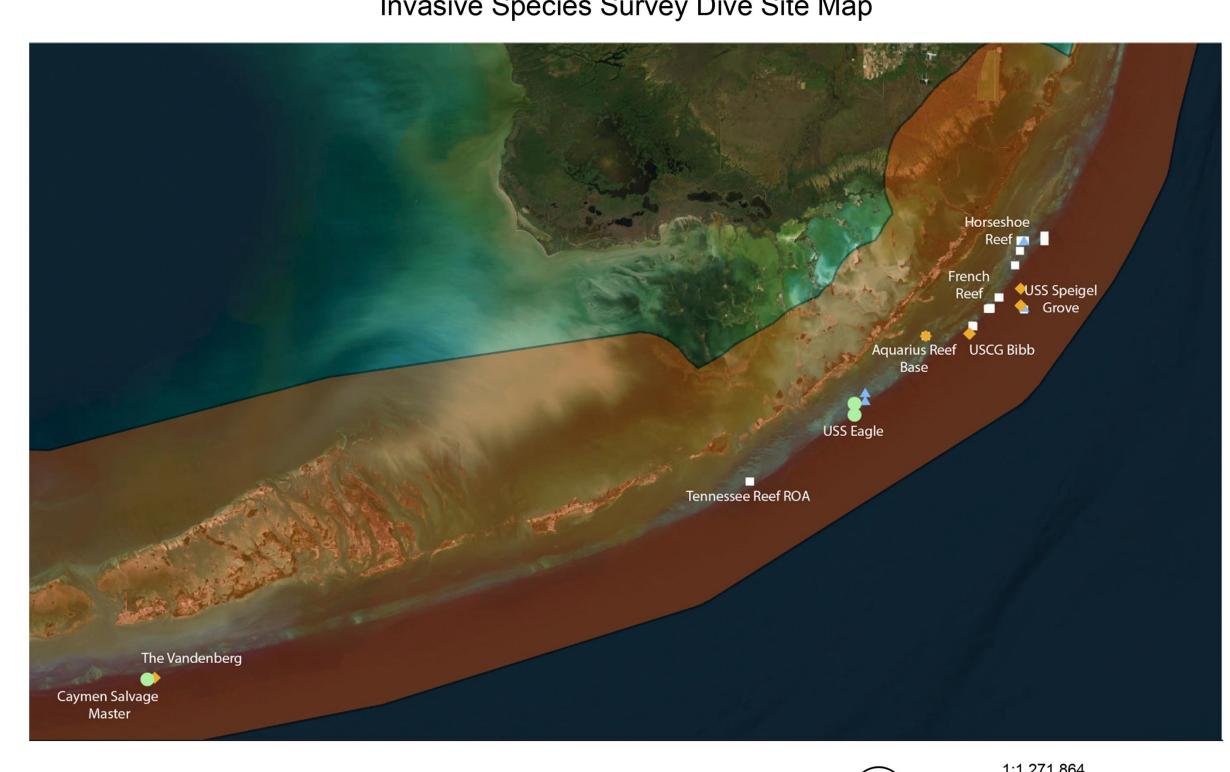
²H.A. Mooney, & E.E. Cleland, The evolutionary impact of invasive species. https://doi.org/10.2307/1444950

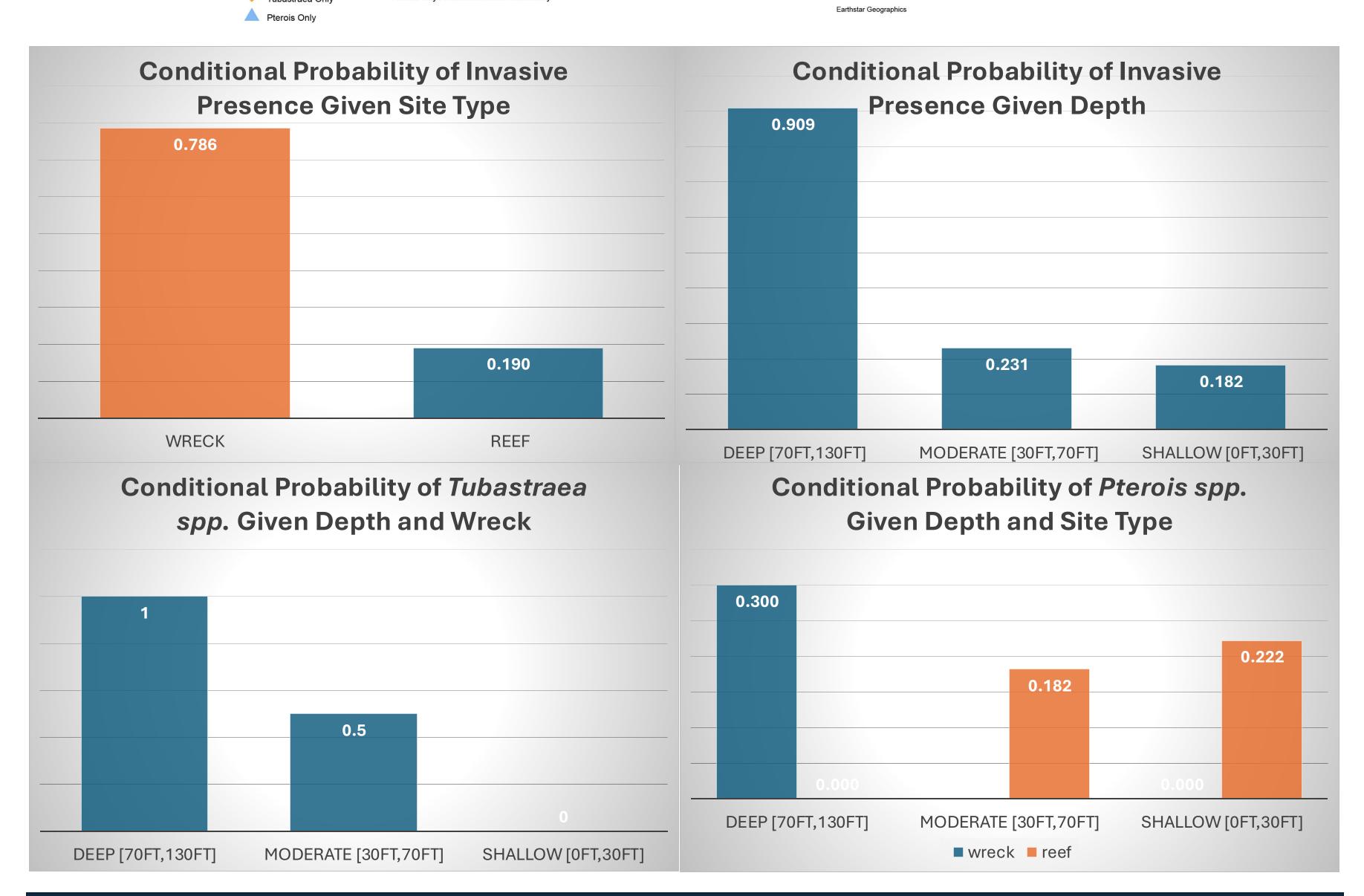
https://doi.org/10.3354/meps09290

³Boltovskoy D, Sylvester F, Paolucci EM. Invasive species denialism: Sorting out facts, beliefs, and definitions. https://doi.org/10.1002/ece3.4588

⁴Schultz, E. T. (1986). Pterois volitans and Pterois miles: Two Valid Species. https://doi.org/10.2307/1444950

⁵Ruiz-Allais, Juan & Benayahu, Yehuda & Lasso-Alcalá, Oscar. (2021). The invasive octocoral Unomia stolonifera (Alcyonacea, Xeniidae) is dominating the benthos in the Southeastern Caribbean Sea. https://doi.org/10.5281/zenodo.4784709


⁶Lages, Bruno & Fleury, Beatriz & Menegola, Carla & Creed, Joel. Change in tropical rocky shore communities due to an alien coral invasion.


dbg1043@miami.edu ¹University of Miami Rosenstiel School of Marine, Atmospheric, & Earth Science

²NOAA Florida Keys National Marine Sanctuary

Results

Invasive Species Survey Dive Site Map

Conclusion

- From analyzing the data collected, this research presents the conditional probability of the noted species to be found on similar types of substrates and associated depths within FKNMS.
- Wreck sites (especially deep wrecks >60ft) show a significantly higher presence of alien species.
- No Unomia, Xenia, or Halophila were noted on any dives within the sanctuary. This is an incredibly positive finding as these species can overrun native ecosystems.⁵
- Pterois spp. had a fairly mottled and distributed presence by geography, depth, and site.
- Tubastraea spp. were found on all deep wreck sites and one (1) moderate depth site (Aquarius Reef Base – 60ft) but were not geographically limited.
- Additional dives need to be conducted at sites with varying depth ranges, particularly in the Middle and Lower Keys as these geographic regions were under-surveyed in this study due to logistics.
- Future research needs to be conducted within FKNMS in order to understand the effect *Tubastraea* spp. has on the native benthic species of artificial substrates. In other parts of the world, Tubastraea spp. has been known to affect the benthic ecosystems they inhabit, such as increasing native biodiversity of the area.⁶ Additional research is needed to understand if the species have similar impacts in FKNMS.
- Overall, the data from this study provides a baseline assessment of common invasive and nonnative species observed within FKNMS and also serves as a conditional prediction tool for researchers to use who are interested in locating these species at similar sites within FKNMS.

Acknowledgements

We would like to thank: Amoray Divers, Rainbow Reef Dive Center's Ocean Conservation Foundation, Conch Republic Divers, Captain's Corner Dive Center, and the University of Miami Scuba Club.