Herbert Wertheim **College of Engineering UNIVERSITY** of FLORIDA

Introduction

High quantities of concrete, metal, and plastic are currently used in living shorelines, resulting in adverse environmental impacts. This study aimed to identify and compare the lifecycle impacts of conventional and alternative materials.

We reviewed **96** peer-reviewed articles describing full-scale and experimental living shorelines projects where materials used were mentioned.

Ма	terial	Application	Ecosystem Type				
Cor	ncrete	 Settling surface Breakwater Stabilization/anchoring Vegetation establishment 	AND AND OT				
Pla.	stic	 Settling surface Stabilization/anchoring Breakwater Sediment stabilization Vegetation establishment Nursery structure Site delineation 					
Me	tal	Settling structureStabilization/anchoringBreakwater					
Nat	tural Fiber	 Settling surface Stabilization/anchoring Vegetation establishment 					
Oys	ster shell	 Settling surface Breakwater Sediment stabilization Vegetation establishment 					
Wo	od	Sediment stabilizationBreakwater					
Roc	ck	 Settling surface Breakwater Sediment stabilization Settling surface 					
Bio	plastic	 Settling surface Sediment stabilization Vegetation establishment Breakwater Stabilization/anchoring 					
Alte con	ernative ncrete	 Breakwater Settling surface Sediment stabilization⁸³ 					

Materials Reviewed

Thank you to the NSF for funding this research through the GRFP (award #1650114) and to the USACE Engineering With Nature program.

Living in a Material World: Support for Natural & Alternative Materials in Living Shorelines Adrian Sakr¹ & Andrew Altieri¹

¹University of Florida, Engineering School for Sustainable Infrastructure & Environment • adriansakr@ufl.edu

Material Prevalence

Material prevalence is presented as the proportion of studies in our review using each material.

Financial Cost vs. CO₂ Emissions

Additional Considerations

Lifespan

Degradation is sometimes a desirable material characteristic following foundation species establishment. However, it is dependent on environmental conditions such as wave energy and foundation species establishment rates.

Sourcing

Using local sourcing, including the use of recycled materials, most reduces impact for natural materials.

Cost (USD) per kg of material	Index Value
0 to 0.01	1
0.01 to 0.10	2
0.1 to 1.0	3
1.0 to 10.0	4
10.0 to 100.0	5

material from production	Index Value
0 to 0.5	1
0.5 to 1.0	2
1.0 to 1.5	3
1.5 to 2.0	4
2.0 to 2.5	5

	Life Cycle Stage							
		Production			Transportation/Deployment		Degradation	
Γ	Material	Resource Consumption	Waste Production	CO ₂ Emission	Transportation	Deployment	Physical Impacts	Chemical Impacts
	Plastic							
	Metal							
	Concrete							
pact	Bio-based/ Biodegradable plastics							
E	Alternative Concrete							
Ī	Rock							
inin	Wood							
Nat	Oyster Shell							
	Natural Fibers							

Examples of material and structure replacement approaches are presented for select ecosystem applications.

Life Cycle Impacts

Low Impact

Impacts are presented as the relative magnitude of adverse environmental effects from each life cycle stage.

Material Replacement