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Motivation & Context

Vehicle electrification is a
common climate mitigation
strategy

* Promotion of Electric Vehicle (EV)
requires better-planned EV charging
stations (EVCSs) network for public
use.

= Vehicle electrification challenges
specific user groups (e.g., older adults,
multi-family residents)

Climate-related Extremes
increase adaptation demands of
EVCS

= Sep. 28th, 2022, Hurricane lan made
landfall in southwestern Florida at
category 4 intensity
EVCSs and road network are
vulnerable to the resulted hazards
(e.g., winds and floods)

Resilience of EV Charging Network:
Sustainable service flow between
EVCSs and User under extremes.

Research Aim and Objectives

» Explore characteristics of BNEU that
affect the resilience of public EV
charging access to users under
disturbances of Hurricane lan hazards

Anticipate how counterfactual worse-
case scenarios of hurricane hazards
would influence the BNEU resilience
and mediate the effects
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How Tropical cyclones could disturb the flow of EV charging service?

= Direct damage on EVCSs (with winds and floods).

= |mpeding the station-user interactions along road networks.
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Fig.1. Bipartite Network of EV charging stations and Users (BNEU)
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Fig.2. Flow of multi-agent-based simulation for refueling behaviors under hazards
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c1 2.784
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Tested features

Resilience measures of user-centric nodes

Tested features Resilience measures of station-centric nodes

Correlation coef.

OLS regression coef. Correlation coef.

OLS regression coef.

Service Recover
gap speed

Charging Recover
activity speed of

Charging
activity

Service gap  Recover
speed

0.682%** 0.423%**
-0.369%*%  -0.371%**
-0.366%*%  -0.208%**

Node degree
Average edge access
Average user
adjacency

2 more vehicle
Median Income

Age > 65

0.130%**
0.077***
-0.064**

0.012
0.088%**
-0.110%**

usage

Recover
speed of
usage

39.604%**
0.046
0.583

0.270%**
-0.001 ***
-0.005%**

0.243 **
-0.245 **
-0.172%

0.200%*
-0.320%*
-0.168%*

66.410
-0.015
-0.032%*

Node degree
Average edge access
Average user
adjacency

Bldg. height nearby -0.192 *
DCEFC Port installed  0.180 *

-1231.76
62005.346

0.009%**
770.16%**

-0.208%*
0.189*

-17.208
0.228

0.976
-0.161%**
0.000

0.199
-0.005

-0.321 -0.005%**

Note. * p <.05. ** p<.01. *** p<.001

* Higher node degrees, dispersed network structures and longer distances occurred with higher resilience of

BNEU, improving both station utility and user access.

* EVCSs with DCFC (Fast charging) ports and locating in less dense urban area are more resilience.
* Among all tested age groups, high proportion of older adults (i.e., aged over 65. ) is related to less resilient

access to BNEU

Category 3

Node-level:

Intense hazards do not alter
BNEU resilience features
Inequitable charging access
for low-income and older
adults would be magnified.

Resilience index of subnetworks B 1213
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Implications

Subnetwork resilience:

The transaction of vulnerable
subnetwork from inner-land
suburban areas to coastal

neighborhoods.

For moderate hurricane hazards

— (Category 3), a smaller decentralized

network more resilient.

= BNEU framework generalizable to coastal communities with high risks of environmental
hazards yet have limited historical experience to anticipate unseen vulnerabilities.
Counterfactual analytical framework enables forward-looking proactive planning in response

to climatic risks and electrifying vehicles
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